Young-Jun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7085768/publications.pdf

Version: 2024-02-01

73 5,390 36
papers citations h-index

74

all docs

citations h-index g-index

74 74 6419
docs citations times ranked citing authors

79698

73

#	Article	IF	CITATIONS
1	A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. Journal of Materials Chemistry A, 2015, 3, 16913-16933.	10.3	565
2	Prospective materials and applications for Li secondary batteries. Energy and Environmental Science, 2011, 4, 1986.	30.8	558
3	Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. Journal of Power Sources, 2015, 282, 45-50.	7.8	270
4	Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni _{0.7} Mn _{0.3}]O ₂ . Journal of the Electrochemical Society, 2014, 161, A920-A926.	2.9	267
5	The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries. Materials Chemistry and Physics, 2011, 131, 547-553.	4.0	264
6	Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries. Chemical Communications, 2012, 48, 5455.	4.1	250
7	Core–Shell Structured Silicon Nanoparticles@TiO _{2–<i>x</i>} /Carbon Mesoporous Microfiber Composite as a Safe and High-Performance Lithium-Ion Battery Anode. ACS Nano, 2014, 8, 2977-2985.	14.6	227
8	A case study on fibrous porous SnO 2 anode for robust, high-capacity lithium-ion batteries. Nano Energy, 2014, 10, 53-62.	16.0	179
9	A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries. Scientific Reports, 2014, 4, 6906.	3.3	136
10	Facile Synthesis of Carbon-Coated Silicon/Graphite Spherical Composites for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12109-12117.	8.0	130
11	Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage. Journal of Power Sources, 2013, 229, 190-197.	7.8	118
12	Investigation of new manganese orthophosphate Mn3(PO4)2 coating for nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode and improvement of its thermal properties. Electrochimica Acta, 2016, 198, 77-83.	5.2	117
13	Dual-Size Silicon Nanocrystal-Embedded SiO _{<i>x</i>} Nanocomposite as a High-Capacity Lithium Storage Material. ACS Nano, 2015, 9, 7690-7696.	14.6	107
14	Multifunctional TiO2 coating for a SiO anode in Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 7999.	6.7	97
15	Superior Electrocatalytic Activity of a Robust Carbonâ€Felt Electrode with Oxygenâ€Rich Phosphate Groups for Allâ€Vanadium Redox Flow Batteries. ChemSusChem, 2016, 9, 1329-1338.	6.8	95
16	Hydrogen Silsequioxane-Derived Si/SiO _{<i>x</i>} Nanospheres for High-Capacity Lithium Storage Materials. ACS Applied Materials & Storage Materials. ACS Applied Materials & Storage Materials & Storage Materials.	8.0	93
17	The origins and mechanism of phase transformation in bulk Li ₂ MnO ₃ : first-principles calculations and experimental studies. Journal of Materials Chemistry A, 2015, 3, 7066-7076.	10.3	91
18	Physically Cross-linked Polymer Binder Induced by Reversible Acid–Base Interaction for High-Performance Silicon Composite Anodes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23545-23553.	8.0	88

#	Article	lF	CITATIONS
19	Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature. Journal of Power Sources, 2014, 253, 48-54.	7.8	82
20	Understanding the effects of a multi-functionalized additive on the cathode–electrolyte interfacial stability of Ni-rich materials. Journal of Power Sources, 2016, 302, 431-438.	7.8	82
21	Capacity fading behavior of Ni-rich layered cathode materials in Li-ion full cells. Journal of Electroanalytical Chemistry, 2016, 782, 168-173.	3.8	76
22	Facile Mn Surface Doping of Ni-Rich Layered Cathode Materials for Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38915-38921.	8.0	69
23	Dendrite-Free Polygonal Sodium Deposition with Excellent Interfacial Stability in a NaAlCl ₄ –2SO ₂ Inorganic Electrolyte. ACS Applied Materials & Interfaces, 2015, 7, 27206-27214.	8.0	68
24	Ceramic composite separators coated with moisturized ZrO ₂ nanoparticles for improving the electrochemical performance and thermal stability of lithium ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 9337-9343.	2.8	65
25	Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 composite material. Journal of Alloys and Compounds, 2012, 517, 20-25.	5.5	63
26	Few-Layer Graphene Island Seeding for Dendrite-Free Li Metal Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 26895-26901.	8.0	63
27	Conductive porous carbon film as a lithium metal storage medium. Electrochimica Acta, 2015, 176, 172-178.	5.2	62
28	Shutdown-functionalized nonwoven separator with improved thermal and electrochemical properties for lithium-ion batteries. Journal of Power Sources, 2016, 305, 225-232.	7.8	62
29	High-Performance Si/SiO _{<i>x</i>} Nanosphere Anode Material by Multipurpose Interfacial Engineering with Black TiO _{2–<i>x</i>} . ACS Applied Materials & amp; Interfaces, 2016, 8, 4541-4547.	8.0	62
30	Co-intercalation of Mg ²⁺ and Na ⁺ in Na _{0.69} Fe ₂ (CN) ₆ as a High-Voltage Cathode for Magnesium Batteries. ACS Applied Materials & Diterfaces, 2016, 8, 8554-8560.	8.0	57
31	Graphene collage on Ni-rich layered oxide cathodes for advanced lithium-ion batteries. Nature Communications, 2021, 12, 2145.	12.8	54
32	5V-class high-voltage batteries with over-lithiated oxide and a multi-functional additive. Journal of Materials Chemistry A, 2015, 3, 6157-6167.	10.3	51
33	Effect of gamma ray irradiation on thermal and electrochemical properties of polyethylene separator for Li ion batteries. Journal of Power Sources, 2010, 195, 6075-6080.	7.8	46
34	A Highly Resilient Mesoporous SiO _{<i>x</i>} Lithium Storage Material Engineered by Oil–Water Templating. ChemSusChem, 2015, 8, 688-694.	6.8	45
35	Mechanism of Oxygen Vacancy on Impeded Phase Transformation and Electrochemical Activation in Inactive Li ₂ MnO ₃ . ChemElectroChem, 2016, 3, 943-949.	3.4	44
36	Incorporation of phosphorus into the surface of natural graphite anode for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 17960.	6.7	42

#	Article	lF	Citations
37	Robust Design of Dualâ€Phasic Carbon Cathode for Lithium–Oxygen Batteries. Advanced Functional Materials, 2019, 29, 1902915.	14.9	34
38	Understanding of Surface Redox Behaviors of Li ₂ MnO ₃ in Liâ€lon Batteries: Firstâ€Principles Prediction and Experimental Validation. ChemSusChem, 2015, 8, 3255-3262.	6.8	31
39	Tuning the surface chemistry of natural graphite anode by H3PO4 and H3BO3 treatments for improving electrochemical and thermal properties. Carbon, 2013, 62, 278-287.	10.3	29
40	High Performance Na–CuCl ₂ Rechargeable Battery toward Room Temperature ZEBRA‶ype Battery. Advanced Energy Materials, 2016, 6, 1600862.	19.5	28
41	Polymeric binder based on PAA and conductive PANI for high performance silicon-based anodes. RSC Advances, 2016, 6, 101622-101625.	3.6	28
42	Communicationâ€"Improvement of Structural Stability during High-Voltage Cycling in High-Nickel Cathode Materials with B ₂ O ₃ Addition. Journal of the Electrochemical Society, 2016, 163, A748-A750.	2.9	28
43	A room-temperature sodium rechargeable battery using an SO2-based nonflammable inorganic liquid catholyte. Scientific Reports, 2015, 5, 12827.	3.3	27
44	Thermal and chemical characterization of the solid-electrolyte interphase in Li-ion batteries using a novel separator sampling method. Journal of Power Sources, 2019, 440, 227083.	7.8	26
45	Insight into the electrochemical behaviors of 5V–class high–voltage batteries composed of lithium–rich layered oxide with multifunctional additive. Journal of Power Sources, 2016, 336, 465-474.	7.8	24
46	Self-adaptive anode design with graphene-coated SiOx/graphite for high-energy Li-ion batteries. Chemical Engineering Journal, 2022, 442, 136166.	12.7	24
47	Nanotechnology enabled rechargeable Li–SO ₂ batteries: another approach towards post-lithium-ion battery systems. Energy and Environmental Science, 2015, 8, 3173-3180.	30.8	23
48	Rosin-Embedded Poly(acrylic acid) Binder for Silicon/Graphite Negative Electrode. ACS Sustainable Chemistry and Engineering, 2016, 4, 6362-6370.	6.7	22
49	Magnesium Anode Pretreatment Using a Titanium Complex for Magnesium Battery. ACS Sustainable Chemistry and Engineering, 2017, 5, 5733-5739.	6.7	22
50	Improved particle hardness of Ti-doped LiNi1/3Co1/3Mn1/3-xTixO2 as high-voltage cathode material for lithium-ion batteries. Journal of Physics and Chemistry of Solids, 2018, 123, 271-278.	4.0	22
51	Oriented TiO2 nanotubes as a lithium metal storage medium. Journal of Electroanalytical Chemistry, 2014, 726, 51-54.	3.8	21
52	Electron-beam-irradiated polyethylene membrane with improved electrochemical and thermal properties for lithium-ion batteries. Journal of Applied Electrochemistry, 2014, 44, 345-352.	2.9	19
53	Junction Welding Techniques for Metal Nanowire Network Electrodes. Macromolecular Research, 2018, 26, 1066-1073.	2.4	19
54	Comparative study of thermal runaway and cell failure of lab-scale Li-ion batteries using accelerating rate calorimetry. Journal of Industrial and Engineering Chemistry, 2020, 83, 247-251.	5 . 8	19

#	Article	IF	CITATIONS
55	Dendrite-Free Li Metal Anode for Rechargeable Li–SO ₂ Batteries Employing Surface Modification with a NaAlCl ₄ –2SO ₂ Electrolyte. ACS Applied Materials & lamp; Interfaces, 2018, 10, 34699-34705.	8.0	18
56	New insights into the phase evolution in CuS during lithiation and delithiation processes. Journal of Materials Chemistry A, $2019, 7, 11699-11708$.	10.3	16
57	Natural Activation of CuO to CuCl2 as a Cathode Material for Dual-Ion Lithium Metal Batteries. Energy Storage Materials, 2021, 41, 466-474.	18.0	16
58	1,3-Propanesultone as an effective functional additive to enhance the electrochemical performance of over-lithiated layered oxides. RSC Advances, 2014, 4, 19172.	3.6	15
59	Defect-Free Copolymer Gate Dielectrics for Gating MoS ₂ Transistors. Journal of Physical Chemistry C, 2018, 122, 12193-12199.	3.1	15
60	Reversible dual-ion battery via mesoporous Cu2O cathode in SO2-in-salt non-flammable electrolyte. Nano Energy, 2019, 66, 104138.	16.0	14
61	Hard Carbonâ€coated Natural Graphite Electrodes for Highâ€Energy and Power Lithiumâ€lon Capacitors. Bulletin of the Korean Chemical Society, 2015, 36, 150-155.	1.9	13
62	Si Nanocrystal-Embedded SiO x nanofoils: Two-Dimensional Nanotechnology-Enabled High Performance Li Storage Materials. Scientific Reports, 2018, 8, 6904.	3.3	11
63	Electrode Engineering with CNTs to Enhance the Electrochemical Performance of LiNi 0.6 Co 0.2 Mn 0.2 O 2 Cathodes with Commercial Level Design Parameters. ChemElectroChem, 2020, 7, 2621-2628.	3.4	11
64	NH ₄ PF ₆ as a Structural Modifier for Building a Robust Carbonâ€Coated Natural Graphite Anode for Lithiumâ€lon Batteries. ChemElectroChem, 2014, 1, 1672-1678.	3.4	10
65	Carbon <scp>nanotubesâ€coated Niâ€rich</scp> cathodes for the green manufacturing process of <scp>lithiumâ€ion</scp> batteries. International Journal of Energy Research, 2022, 46, 16061-16074.	4.5	10
66	Densification and charge transport characterization of composite cathodes with single-crystalline LiNi0.8Co0.15Al0.05O2 for solid-state batteries. Energy Storage Materials, 2022, 46, 155-164.	18.0	9
67	Effect of electrode design parameters on the rate performance of LiNi0.6Co0.2Mn0.2O2 cathodes using pulse measurements. Electrochimica Acta, 2020, 341, 135936.	5.2	8
68	Effects of Various Transition Metals on the Thermal Oxidative Stabilization of Polyacrylonitrile Nanofibers. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3368-3377.	3.7	8
69	Selfâ€Formulated Naâ€Based Dualâ€Ion Battery Using Nonflammable SO ₂ â€Based Inorganic Liquid Electrolyte. Small, 2021, 17, e1902144.	10.0	7
70	Graphene/PVDF Composites for Ni-rich Oxide Cathodes toward High-Energy Density Li-ion Batteries. Materials, 2021, 14, 2271.	2.9	7
71	A joint experimental and theoretical determination of the structure of discharge products in Na–SO ₂ batteries. Physical Chemistry Chemical Physics, 2016, 18, 24841-24844.	2.8	5
72	Size effect of SO ₂ receptors on the energy efficiency of Na–SO ₂ batteries: gallium-based inorganic electrolytes. RSC Advances, 2016, 6, 105105-105109.	3.6	4

Young-Jun Kim

#	Article	IF	CITATIONS
73	Enhanced Rate Capability of Na– <scp>SO₂</scp> Rechargeable Battery by Ureaâ€templated Meso/Macroporous Carbon Electrode. Bulletin of the Korean Chemical Society, 2016, 37, 1285-1289.	1.9	2