
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7085630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emergence of Azole Resistance in Aspergillus fumigatus and Spread of a Single Resistance Mechanism. PLoS Medicine, 2008, 5, e219.	8.4	630
2	Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use?. Lancet Infectious Diseases, The, 2009, 9, 789-795.	9.1	524
3	A New Aspergillus fumigatus Resistance Mechanism Conferring In Vitro Cross-Resistance to Azole Antifungals Involves a Combination of cyp51A Alterations. Antimicrobial Agents and Chemotherapy, 2007, 51, 1897-1904.	3.2	443
4	Multiple-Triazole–Resistant Aspergillosis. New England Journal of Medicine, 2007, 356, 1481-1483.	27.0	360
5	Head-to-Head Comparison of the Activities of Currently Available Antifungal Agents against 3,378 Spanish Clinical Isolates of Yeasts and Filamentous Fungi. Antimicrobial Agents and Chemotherapy, 2006, 50, 917-921.	3.2	279
6	Identification of Two Different 14-α Sterol Demethylase-Related Genes (cyp51A and cyp51B) in Aspergillus fumigatus and Other Aspergillus species. Journal of Clinical Microbiology, 2001, 39, 2431-2438.	3.9	276
7	<i>Aspergillus</i> Section <i>Fumigati</i> : Antifungal Susceptibility Patterns and Sequence-Based Identification. Antimicrobial Agents and Chemotherapy, 2008, 52, 1244-1251.	3.2	233
8	Environmental Study of Azole-Resistant <i>Aspergillus fumigatus</i> and Other Aspergilli in Austria, Denmark, and Spain. Antimicrobial Agents and Chemotherapy, 2010, 54, 4545-4549.	3.2	217
9	Substitutions at Methionine 220 in the 14α-Sterol Demethylase (Cyp51A) of Aspergillus fumigatus Are Responsible for Resistance In Vitro to Azole Antifungal Drugs. Antimicrobial Agents and Chemotherapy, 2004, 48, 2747-2750.	3.2	200
10	Epidemiological Cutoffs and Cross-Resistance to Azole Drugs in <i>Aspergillus fumigatus</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 2468-2472.	3.2	196
11	Antifungal susceptibility profile of clinical Fusarium spp. isolates identified by molecular methods. Journal of Antimicrobial Chemotherapy, 2008, 61, 805-809.	3.0	191
12	Susceptibility Patterns and Molecular Identification of Trichosporon Species. Antimicrobial Agents and Chemotherapy, 2005, 49, 4026-4034.	3.2	173
13	Aspergillus Species and Other Molds in Respiratory Samples from Patients with Cystic Fibrosis: a Laboratory-Based Study with Focus on Aspergillus fumigatus Azole Resistance. Journal of Clinical Microbiology, 2011, 49, 2243-2251.	3.9	164
14	The Aspergillus fumigatus chsC and chsG genes encode Class III chitin synthases with different functions. Molecular Microbiology, 1996, 20, 667-679.	2.5	141
15	Triazole Resistance in Aspergillus Species: An Emerging Problem. Drugs, 2017, 77, 599-613.	10.9	140
16	G484S Amino Acid Substitution in Lanosterol 14-α Demethylase (ERG11) Is Related to Fluconazole Resistance in a Recurrent Cryptococcus neoformans Clinical Isolate. Antimicrobial Agents and Chemotherapy, 2003, 47, 3653-3656.	3.2	124
17	A New Approach to Drug Discovery: High-Throughput Screening of Microbial Natural Extracts against Aspergillus fumigatus Using Resazurin. Journal of Biomolecular Screening, 2012, 17, 542-549.	2.6	120
18	Ergosterol biosynthesis in Aspergillus fumigatus: its relevance as an antifungal target and role in antifungal drug resistance. Frontiers in Microbiology, 2012, 3, 439.	3.5	120

#	Article	IF	CITATIONS
19	Ergosterol biosynthesis pathway in Aspergillus fumigatus. Steroids, 2008, 73, 339-347.	1.8	115
20	Aspergillus fumigatus chsE:A Gene Related toCHS3ofSaccharomyces cerevisiaeand Important for Hyphal Growth and Conidiophore Development but Not Pathogenicity. Fungal Genetics and Biology, 1997, 21, 141-152.	2.1	114
21	Comparative Evaluation of NCCLS M27-A and EUCAST Broth Microdilution Procedures for Antifungal Susceptibility Testing of Candida Species. Antimicrobial Agents and Chemotherapy, 2002, 46, 3644-3647.	3.2	113
22	Targeted Gene Disruption of the 14-α Sterol Demethylase (cyp51A) in Aspergillus fumigatus and Its Role in Azole Drug Susceptibility. Antimicrobial Agents and Chemotherapy, 2005, 49, 2536-2538.	3.2	113
23	Triazole Resistance in Aspergillus spp.: A Worldwide Problem?. Journal of Fungi (Basel, Switzerland), 2016, 2, 21.	3.5	108
24	Rapid Detection of Triazole Antifungal Resistance in <i>Aspergillus fumigatus</i> . Journal of Clinical Microbiology, 2008, 46, 1200-1206.	3.9	101
25	Inoculum Standardization for Antifungal Susceptibility Testing of Filamentous Fungi Pathogenic for Humans. Journal of Clinical Microbiology, 2001, 39, 1345-1347.	3.9	99
26	Outbreak of gastric mucormycosis associated with the use of wooden tongue depressors in critically ill patients. Intensive Care Medicine, 2004, 30, 724-728.	8.2	99
27	The non-mammalian host <i>Galleria mellonella</i> can be used to study the virulence of the fungal pathogen <i>Candida tropicalis</i> and the efficacy of antifungal drugs during infection by this pathogenic yeast. Medical Mycology, 2013, 51, 461-472.	0.7	98
28	Susceptibility profile of 29 clinical isolates of Rhodotorula spp. and literature review. Journal of Antimicrobial Chemotherapy, 2005, 55, 312-316.	3.0	93
29	Current status of antifungal resistance and its impact on clinical practice. British Journal of Haematology, 2014, 166, 471-484.	2.5	93
30	Deciphering the role of the chitin synthase families 1 and 2 in the <i>in vivo</i> and <i>in vitro</i> growth of <i>Aspergillus fumigatus</i> by multiple gene targeting deletion. Cellular Microbiology, 2014, 16, 1784-1805.	2.1	90
31	Scopulariopsis brevicaulis , a Fungal Pathogen Resistant to Broad-Spectrum Antifungal Agents. Antimicrobial Agents and Chemotherapy, 2003, 47, 2339-2341.	3.2	83
32	Cell wall biogenesis in a double chitin synthase mutant (chsGâ^'/chsEâ^') of Aspergillus fumigatus. Fungal Genetics and Biology, 2003, 38, 98-109.	2.1	82
33	Members of protein Oâ€mannosyltransferase family in <i>Aspergillus fumigatus</i> differentially affect growth, morphogenesis and viability. Molecular Microbiology, 2010, 76, 1205-1221.	2.5	81
34	Genetic Relatedness versus Biological Compatibility between Aspergillus fumigatus and Related Species. Journal of Clinical Microbiology, 2014, 52, 3707-3721.	3.9	79
35	In Vitro Activities of Three Licensed Antifungal Agents against Spanish Clinical Isolates of Aspergillus spp. Antimicrobial Agents and Chemotherapy, 2003, 47, 3085-3088.	3.2	78
36	Galactosaminogalactan activates the inflammasome to provide host protection. Nature, 2020, 588, 688-692.	27.8	78

#	Article	IF	CITATIONS
37	Proposal for a unified nomenclature for targetâ€site mutations associated with resistance to fungicides. Pest Management Science, 2016, 72, 1449-1459.	3.4	76
38	<i>Candida parapsilosis</i> , <i>Candida orthopsilosis</i> , and <i>Candida metapsilosis</i> virulence in the non-conventional host <i>Galleria mellonella</i> . Virulence, 2014, 5, 278-285.	4.4	73
39	Susceptibility Testing and Molecular Classification of <i>Paecilomyces</i> spp. Antimicrobial Agents and Chemotherapy, 2008, 52, 2926-2928.	3.2	72
40	In Vitro Activities of 35 Double Combinations of Antifungal Agents against <i>Scedosporium apiospermum</i> and <i>Scedosporium prolificans</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 1136-1139.	3.2	72
41	A multigene family related to chitin synthase genes of yeast in the opportunistic pathogen Aspergillus fumigatus. Molecular Genetics and Genomics, 1995, 246, 353-359.	2.4	70
42	Species Identification and Antifungal Susceptibility Patterns of Species Belonging to <i>Aspergillus</i> Section <i>Nigri</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 4514-4517.	3.2	70
43	Identification of Pathogenic Rare Yeast Species in Clinical Samples: Comparison between Phenotypical and Molecular Methods. Journal of Clinical Microbiology, 2010, 48, 1895-1899.	3.9	70
44	The ZrfC alkaline zinc transporter is required for <i>Aspergillus fumigatus</i> virulence and its growth in the presence of the Zn/Mn-chelating protein calprotectin. Cellular Microbiology, 2014, 16, 548-564.	2.1	70
45	Molecular epidemiology and antifungal susceptibility patterns of <i>Sporothrix schenckii</i> isolates from a cat-transmitted epidemic of sporotrichosis in Rio de Janeiro, Brazil. Medical Mycology, 2008, 46, 141-151.	0.7	68
46	Combined Activity In Vitro of Caspofungin, Amphotericin B, and Azole Agents against Itraconazole-Resistant Clinical Isolates of Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2005, 49, 1232-1235.	3.2	65
47	In Vitro Activities of 10 Combinations of Antifungal Agents against the Multiresistant Pathogen Scopulariopsis brevicaulis. Antimicrobial Agents and Chemotherapy, 2006, 50, 2248-2250.	3.2	65
48	Functional analysis of the fungal/plant class chitinase family in Aspergillus fumigatus. Fungal Genetics and Biology, 2011, 48, 418-429.	2.1	65
49	Cloning and characterization ofchsD, a chitin synthase-like gene ofAspergillus fumigatus. FEMS Microbiology Letters, 1996, 143, 69-76.	1.8	59
50	Insight into the Significance of Aspergillus fumigatus cyp51A Polymorphisms. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	57
51	Identification of Off-Patent Compounds That Present Antifungal Activity Against the Emerging Fungal Pathogen Candida auris. Frontiers in Cellular and Infection Microbiology, 2019, 9, 83.	3.9	57
52	Susceptibility of fluconazole-resistant clinical isolates of Candida spp. to echinocandin LY303366, itraconazole and amphotericin B. Journal of Antimicrobial Chemotherapy, 2000, 46, 475-477.	3.0	56
53	Influence of Glucose Supplementation and Inoculum Size on Growth Kinetics and Antifungal Susceptibility Testing of Candida spp. Journal of Clinical Microbiology, 2001, 39, 525-532.	3.9	56
54	Genotyping and Antifungal Susceptibility Profile of Dipodascus capitatus Isolates Causing Disseminated Infection in Seven Hematological Patients of a Tertiary Hospital. Journal of Clinical Microbiology, 2004, 42, 1832-1836.	3.9	54

#	Article	IF	CITATIONS
55	Hitting the Caspofungin Salvage Pathway of Human-Pathogenic Fungi with the Novel Lasso Peptide Humidimycin (MDN-0010). Antimicrobial Agents and Chemotherapy, 2015, 59, 5145-5153.	3.2	54
56	Rates of antifungal resistance among Spanish clinical isolates of Cryptococcus neoformans var. neoformans. Journal of Antimicrobial Chemotherapy, 2005, 56, 1144-1147.	3.0	52
57	In vitro activity of terbinafine against medically important non-dermatophyte species of filamentous fungi. Journal of Antimicrobial Chemotherapy, 2004, 53, 1086-1089.	3.0	51
58	Genome-Wide Comparative Analysis of Aspergillus fumigatus Strains: The Reference Genome as a Matter of Concern. Genes, 2018, 9, 363.	2.4	51
59	Rapid Development of Candida krusei Echinocandin Resistance during Caspofungin Therapy. Antimicrobial Agents and Chemotherapy, 2015, 59, 6975-6982.	3.2	50
60	In vitro evaluation of combination of terbinafine with itraconazole or amphotericin B against Zygomycota. Diagnostic Microbiology and Infectious Disease, 2003, 45, 199-202.	1.8	49
61	In Vitro Activities of Ravuconazole and Four Other Antifungal Agents against Fluconazole-Resistant or -Susceptible Clinical Yeast Isolates. Antimicrobial Agents and Chemotherapy, 2004, 48, 3107-3111.	3.2	49
62	A novel family of dehydrin-like proteins is involved in stress response in the human fungal pathogen <i>Aspergillus fumigatus</i> . Molecular Biology of the Cell, 2011, 22, 1896-1906.	2.1	48
63	Resistance to Voriconazole Due to a G448S Substitution in Aspergillus fumigatus in a Patient with Cerebral Aspergillosis. Journal of Clinical Microbiology, 2012, 50, 2531-2534.	3.9	48
64	Standardization of Antifungal Susceptibility Variables for a Semiautomated Methodology. Journal of Clinical Microbiology, 2001, 39, 2513-2517.	3.9	46
65	In Vitro Activity of Ravuconazole against 923 Clinical Isolates of Nondermatophyte Filamentous Fungi. Antimicrobial Agents and Chemotherapy, 2005, 49, 5136-5138.	3.2	46
66	Aspergillus fumigatus C-5 Sterol Desaturases Erg3A and Erg3B: Role in Sterol Biosynthesis and Antifungal Drug Susceptibility. Antimicrobial Agents and Chemotherapy, 2006, 50, 453-460.	3.2	45
67	Activity Profile In Vitro of Micafungin against Spanish Clinical Isolates of Common and Emerging Species of Yeasts and Molds. Antimicrobial Agents and Chemotherapy, 2009, 53, 2192-2195.	3.2	45
68	Invasive aspergillosis caused by cryptic Aspergillus species: a report of two consecutive episodes in a patient with leukaemia. Journal of Medical Microbiology, 2013, 62, 474-478.	1.8	43
69	Analysis of the Influence of Tween Concentration, Inoculum Size, Assay Medium, and Reading Time on Susceptibility Testing of Aspergillus spp. Journal of Clinical Microbiology, 2005, 43, 1251-1255.	3.9	41
70	Role of Aspergillus lentulus 14-α Sterol Demethylase (Cyp51A) in Azole Drug Susceptibility. Antimicrobial Agents and Chemotherapy, 2011, 55, 5459-5468.	3.2	40
71	First detection of Aspergillus fumigatus azole-resistant strain due to Cyp51A TR46/Y121F/T289A in an azole-naive patient in Spain. New Microbes and New Infections, 2015, 6, 33-34.	1.6	40
72	Molecular identification, antifungal resistance and virulence of <i>Cryptococcus neoformans</i> and <i>Cryptococcus deneoformans</i> isolated in Seville, Spain. Mycoses, 2017, 60, 40-50.	4.0	40

#	Article	IF	CITATIONS
73	Current section and species complex concepts in <i>Aspergillus:</i> recommendations for routine daily practice. Annals of the New York Academy of Sciences, 2012, 1273, 18-24.	3.8	39
74	Genotype distribution of clinical isolates of Trichosporon asahii based on sequencing of intergenic spacer 1. Diagnostic Microbiology and Infectious Disease, 2007, 58, 435-440.	1.8	36
75	Two KTR Mannosyltransferases Are Responsible for the Biosynthesis of Cell Wall Mannans and Control Polarized Growth in <i>Aspergillus fumigatus</i> . MBio, 2019, 10, .	4.1	31
76	A New Aspergillus fumigatus Typing Method Based on Hypervariable Tandem Repeats Located within Exons of Surface Protein Coding Genes (TRESP). PLoS ONE, 2016, 11, e0163869.	2.5	30
77	Comparison of Two Highly Discriminatory Typing Methods to Analyze Aspergillus fumigatus Azole Resistance. Frontiers in Microbiology, 2018, 9, 1626.	3.5	27
78	Molecular Identification, Antifungal Susceptibility Testing, and Mechanisms of Azole Resistance in Aspergillus Species Received within a Surveillance Program on Antifungal Resistance in Spain. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	27
79	A Cyp51B Mutation Contributes to Azole Resistance in Aspergillus fumigatus. Journal of Fungi (Basel,) Tj ETQq1	l 0,784314 3.5	1 rgBT /Overl
80	Clinical relevance of resistance to antifungals. International Journal of Antimicrobial Agents, 2008, 32, S111-S113.	2.5	22
81	Three-dimensional models of 14α-sterol demethylase (Cyp51A) from Aspergillus lentulus and Aspergillus fumigatus: an insight into differences in voriconazole interaction. International Journal of Antimicrobial Agents, 2011, 38, 426-434.	2.5	22
82	Fitness Studies of Azole-Resistant Strains of Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2015, 59, 7866-7869.	3.2	22
83	Breakthrough pulmonary Aspergillus fumigatus infection with multiple triazole resistance in a Spanish patient with chronic myeloid leukemia. Revista Iberoamericana De Micologia, 2013, 30, 64-68.	0.9	20
84	Antifungal susceptibility profile of clinical Alternaria spp. identified by molecular methods. Journal of Antimicrobial Chemotherapy, 2011, 66, 2585-2587.	3.0	17
85	Aspergillus fumigatus Cross-Resistance between Clinical and Demethylase Inhibitor Azole Drugs. Applied and Environmental Microbiology, 2021, 87, .	3.1	16
86	COVID-19 Associated Pulmonary Aspergillosis (CAPA): Hospital or Home Environment as a Source of Life-Threatening Aspergillus fumigatus Infection?. Journal of Fungi (Basel, Switzerland), 2022, 8, 316.	3.5	15
87	Detection of Resistance to Amphotericin B in Candida Isolates by Using Iso-Sensitest Broth. Antimicrobial Agents and Chemotherapy, 2001, 45, 2070-2074.	3.2	14
88	Time of Incubation for Antifungal Susceptibility Testing of <i>Aspergillus fumigatus</i> : Can MIC Values Be Obtained at 24 Hours?. Antimicrobial Agents and Chemotherapy, 2007, 51, 4502-4504.	3.2	13
89	Polyphasic characterization of fungal isolates from a published case of invasive aspergillosis reveals misidentification of Aspergillus felis as Aspergillus viridinutans. Journal of Medical Microbiology, 2014, 63, 617-619.	1.8	13
90	Point Mutations in the 14-α Sterol Demethylase Cyp51A or Cyp51C Could Contribute to Azole Resistance in Aspergillus flavus. Genes, 2020, 11, 1217.	2.4	13

#	Article	IF	CITATIONS
91	Multiresistance to Nonazole Fungicides in Aspergillus fumigatus TR ₃₄ /L98H Azole-Resistant Isolates. Antimicrobial Agents and Chemotherapy, 2021, 65, e0064221.	3.2	13
92	Ribosomic DNA intergenic spacer 1 region is useful when identifying Candida parapsilosis spp. complex based on high-resolution melting analysis. Medical Mycology, 2014, 52, 472-481.	0.7	12
93	New applications for known drugs: Human glycogen synthase kinase 3 inhibitors as modulators of Aspergillus fumigatus growth. European Journal of Medicinal Chemistry, 2016, 116, 281-289.	5.5	10
94	Hospital Environment as a Source of Azole-Resistant Aspergillus fumigatus Strains with TR34/L98H and G448S Cyp51A Mutations. Journal of Fungi (Basel, Switzerland), 2021, 7, 22.	3.5	10
95	Antifungal drug resistance in molds: Clinical and microbiological factors. Current Fungal Infection Reports, 2008, 2, 36-42.	2.6	9
96	Azasordarins: Susceptibility of Fluconazole-Susceptible and Fluconazole-Resistant Clinical Isolates of Candida spp. to GW 471558. Antimicrobial Agents and Chemotherapy, 2001, 45, 1905-1907.	3.2	8
97	Are Point Mutations in HMG-CoA Reductases (Hmg1 and Hmg2) a Step towards Azole Resistance in Aspergillus fumigatus?. Molecules, 2021, 26, 5975.	3.8	5
98	Could the determination of <i>Aspergillus fumigatus</i> mating type have prognostic value in invasive aspergillosis?. Mycoses, 2018, 61, 172-178.	4.0	4
99	Azole Antifungal Drugs: Mode of Action and Resistance. , 2021, , 427-437.		4
100	Genetic Similarity among One Aspergillus flavus Strain Isolated from a Patient Who Underwent Heart Surgery and Two Environmental Strains Obtained from the Operating Room. Journal of Clinical Microbiology, 2000, 38, 2419-2422.	3.9	4
101	Galactomannan enzyme immunoassay and quantitative Real Time PCR as tools to evaluate the exposure and response in a rat model of aspergillosis after posaconazole prophylaxis. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2016, 34, 571-576.	0.5	2
102	Antifungal Mechanisms of Action and Resistance. , 0, , 457-466.		1
103	Presente y futuro de la micologÃa médica. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2003, 21, 75-80.	0.5	Ο
104	Aspergillus as a Human Pathogen: an Evolutionary Perspective. , 0, , 591-601.		0
105	An expanded agarâ€based screening method for azoleâ€resistant Aspergillus fumigatus. Mycoses, 2021, , .	4.0	О