Mathieu Bourdenx

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7085109/publications.pdf

Version: 2024-02-01

39 papers 4,307 citations

257450 24 h-index 315739 38 g-index

45 all docs

45 docs citations

45 times ranked

6865 citing authors

#	Article	IF	Citations
1	Brain injections of glial cytoplasmic inclusions induce a multiple system atrophy-like pathology. Brain, 2022, 145, 1001-1017.	7.6	14
2	The different autophagy degradation pathways and neurodegeneration. Neuron, 2022, 110, 935-966.	8.1	150
3	Protective role of chaperone-mediated autophagy against atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121133119.	7.1	29
4	Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nature Communications, 2021, 12, 2238.	12.8	101
5	Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell, 2021, 184, 2696-2714.e25.	28.9	151
6	Chaperone-mediated autophagy: a gatekeeper of neuronal proteostasis. Autophagy, 2021, 17, 2040-2042.	9.1	21
7	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /C	Overlock 10	0 Tf 50 502 To 1,430
8	Reciprocal regulation of chaperone-mediated autophagy and the circadian clock. Nature Cell Biology, 2021, 23, 1255-1270.	10.3	33
9	Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain, 2020, 143, 1462-1475.	7.6	135
10	Identification of distinct pathological signatures induced by patient-derived \hat{l}_{\pm} -synuclein structures in nonhuman primates. Science Advances, 2020, 6, eaaz 9165.	10.3	34
11	CB1-receptor-mediated inhibitory LTD triggers presynaptic remodeling via protein synthesis and ubiquitination. ELife, 2020, 9, .	6.0	19
12	Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS Biology, 2019, 17, e3000301.	5.6	136
13	Rare variants in the neuronal ceroid lipofuscinosis gene MFSD8 are candidate risk factors for frontotemporal dementia. Acta Neuropathologica, 2019, 137, 71-88.	7.7	29
14	Transcription factor EB overexpression prevents neurodegeneration in experimental synucleinopathies. JCI Insight, 2019, 4, .	5.0	54
15	Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurology, The, 2018, 17, 802-815.	10.2	269
16	Systemic Gene Delivery by Single-Dose Intracardiac Administration of scAAV2/9 and scAAV2/rh10 Variants in Newborn Rats. Human Gene Therapy Methods, 2018, 29, 189-199.	2.1	1
17	Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: Examples of amyloidopathies, tauopathies and synucleinopathies. Progress in Neurobiology, 2017, 155, 171-193.	5.7	137
18	In vitro α-synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body extracts from Parkinson disease brains. Neurobiology of Disease, 2017, 103, 101-112.	4.4	96

#	Article	IF	Citations
19	Lack of spontaneous age-related brain pathology in Octodon degus: a reappraisal of the model. Scientific Reports, 2017, 7, 45831.	3.3	21
20	In utero delivery of rAAV2/9 induces neuronal expression of the transgene in the brain: towards new models of Parkinson's disease. Gene Therapy, 2017, 24, 801-809.	4.5	8
21	Involvement of the bed nucleus of the stria terminalis in L-Dopa induced dyskinesia. Scientific Reports, 2017, 7, 2348.	3.3	6
22	Exosomes, an Unmasked Culprit in Neurodegenerative Diseases. Frontiers in Neuroscience, 2017, 11, 26.	2.8	110
23	Selective Inactivation of Striatal FosB/ΔFosB-Expressing Neurons Alleviates L-DOPA–Induced Dyskinesia. Biological Psychiatry, 2016, 79, 354-361.	1.3	68
24	Early prenatal exposure to MPTP does not affect nigrostrial neurons in macaque monkey. Synapse, 2016, 70, 52-56.	1.2	3
25	Targeting αâ€synuclein: Therapeutic options. Movement Disorders, 2016, 31, 882-888.	3.9	37
26	Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases. Autophagy, 2016, 12, 472-483.	9.1	146
27	What lysosomes actually tell us about Parkinson's disease?. Ageing Research Reviews, 2016, 32, 140-149.	10.9	19
28	Targeting \hat{l}_{\pm} -synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. Lancet Neurology, The, 2015, 14, 855-866.	10.2	393
29	Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Progress in Neurobiology, 2015, 132, 96-168.	5.7	379
30	D1 dopamine receptor stimulation impairs striatal proteasome activity in Parkinsonism through 26S proteasome disassembly. Neurobiology of Disease, 2015, 78, 77-87.	4.4	10
31	Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by $\hat{I}\pm$ -synuclein overexpression. Acta Neuropathologica Communications, 2015, 3, 46.	5.2	88
32	Lysosomes and $\tilde{A}\check{Z}\hat{A}\pm$ -synuclein form a dangerous duet leading to neuronal cell death. Frontiers in Neuroanatomy, 2014, 8, 83.	1.7	76
33	Systemic gene delivery to the central nervous system using Adeno-associated virus. Frontiers in Molecular Neuroscience, 2014, 7, 50.	2.9	65
34	Down-regulating α-synuclein for treating synucleopathies. Movement Disorders, 2014, 29, 1463-1465.	3.9	4
35	Abnormal structure-specific peptide transmission and processing in a primate model of Parkinson's disease and I-DOPA-induced dyskinesia. Neurobiology of Disease, 2014, 62, 307-312.	4.4	25
36	Phosphorylation of \hat{l}_{\pm} -Synuclein at ser120 accelerates neurodegeneration. Movement Disorders, 2013, 28, 441-441.	3.9	0

#	Article	IF	CITATIONS
37	DNA as the next digital information storage support. Movement Disorders, 2013, 28, 583-583.	3.9	1
38	Allograft of stem cellâ€derived dopaminergic neurons for Parkinson's disease. Movement Disorders, 2013, 28, 736-736.	3.9	0
39	Alphaâ€synuclein inoculation initiates a neurodegenerative cascade in nontransgenic mice. Movement Disorders, 2013, 28, 126-126.	3.9	O