Isaias Glezer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7084762/publications.pdf Version: 2024-02-01

ISAINS CIEZED

#	Article	IF	CITATIONS
1	Humoral and cellular responses to vaccination with homologous CoronaVac or ChAdOx1 and heterologous third dose with BNT162b2. Journal of Infection, 2022, 84, 834-872.	3.3	9
2	Viral infection and smell loss: The case of COVIDâ€19. Journal of Neurochemistry, 2021, 157, 930-943.	3.9	43
3	Olfactory Dysfunction in Frontline Health Care Professionals During COVID-19 Pandemic in Brazil. Frontiers in Physiology, 2021, 12, 622987.	2.8	10
4	Lipase-like 5 enzyme controls mitochondrial activity in response to starvation in Caenorhabditis elegans. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158539.	2.4	9
5	Olfactory Loss of Function as a Possible Symptom of COVID-19. JAMA Otolaryngology - Head and Neck Surgery, 2020, 146, 872.	2.2	1
6	Alterations in lipid metabolism of spinal cord linked to amyotrophic lateral sclerosis. Scientific Reports, 2019, 9, 11642.	3.3	98
7	Olfactory receptor function. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 164, 67-78.	1.8	31
8	Brain Innate Immune Response in Diet-Induced Obesity as a Paradigm for Metabolic Influence on Inflammatory Signaling. Frontiers in Neuroscience, 2019, 13, 342.	2.8	13
9	A new function for Prokineticin 2: Recruitment of SVZ-derived neuroblasts to the injured cortex in a mouse model of traumatic brain injury. Molecular and Cellular Neurosciences, 2019, 94, 1-10.	2.2	25
10	CD36 Neuronal Identity in the Olfactory Epithelium. Methods in Molecular Biology, 2018, 1820, 1-19.	0.9	0
11	Editorial: Updates and New Concepts in Regulation of Proinflammatory Gene Expression by Steroid Hormones. Frontiers in Endocrinology, 2018, 9, 191.	3.5	2
12	CD36 Shunts Eicosanoid Metabolism to Repress CD14 Licensed Interleukin-1Î ² Release and Inflammation. Frontiers in Immunology, 2018, 9, 890.	4.8	20
13	Topical Dexamethasone Administration Impairs Protein Synthesis and Neuronal Regeneration in the Olfactory Epithelium. Frontiers in Molecular Neuroscience, 2018, 11, 50.	2.9	23
14	The balance between efficient anti-inflammatory treatment and neuronal regeneration in the olfactory epithelium. Neural Regeneration Research, 2018, 13, 1711.	3.0	13
15	Conditional Deletion of <i>Ric-8b</i> in Olfactory Sensory Neurons Leads to Olfactory Impairment. Journal of Neuroscience, 2017, 37, 12202-12213.	3.6	10
16	Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses. Frontiers in Endocrinology, 2016, 7, 31.	3.5	81
17	CD36 is expressed in a defined subpopulation of neurons in the olfactory epithelium. Scientific Reports, 2016, 6, 25507.	3.3	34
18	Expression of Tyrosine Hydroxylase is Negatively Regulated Via Prion Protein. Neurochemical Research, 2016, 41, 1691-1699.	3.3	2

ISAIAS GLEZER

#	Article	IF	CITATIONS
19	CD36, CD44, and CD83 Expression and Putative Functions in Neural Tissues. , 2015, , 27-40.		2
20	Oncostatin M is a novel glucocorticoid-dependent neuroinflammatory factor that enhances oligodendrocyte precursor cell activity in demyelinated sites. Brain, Behavior, and Immunity, 2010, 24, 695-704.	4.1	36
21	Neuronal expression of Cd36, Cd44, and Cd83 antigen transcripts maps to distinct and specific murine brain circuits. Journal of Comparative Neurology, 2009, 517, 906-924.	1.6	46
22	Age-related changes in cerebellar phosphatase-1 reduce Na,K-ATPase activity. Neurobiology of Aging, 2008, 29, 1712-1720.	3.1	10
23	Neuroprotective role of the innate immune system by microglia. Neuroscience, 2007, 147, 867-883.	2.3	314
24	Genes Involved in the Balance between Neuronal Survival and Death during Inflammation. PLoS ONE, 2007, 2, e310.	2.5	32
25	Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries. FASEB Journal, 2006, 20, 750-752.	0.5	122
26	Glutamate modulates sodium-potassium-ATPase through cyclic GMP and cyclic GMP-dependent protein kinase in rat striatum. Cell Biochemistry and Function, 2005, 23, 115-123.	2.9	29
27	Oxidative state in platelets and erythrocytes in aging and Alzheimer's disease. Neurobiology of Aging, 2005, 26, 857-864.	3.1	110
28	Age-related changes in cyclic GMP and PKG-stimulated cerebellar Na,K-ATPase activity. Neurobiology of Aging, 2005, 26, 907-916.	3.1	45
29	Glucocorticoids: Protectors of the Brain during Innate Immune Responses. Neuroscientist, 2004, 10, 538-552.	3.5	70
30	Changes in sodium, potassium-ATPase induced by repeated fencamfamine: the roles of cyclic AMP-dependent protein kinase and the nitric oxide–cyclic GMP pathway. Neuropharmacology, 2003, 45, 1151-1159.	4.1	7
31	MK-801 and 7-Ni attenuate the activation of brain NF-κB induced by LPS. Neuropharmacology, 2003, 45, 1120-1129.	4.1	75
32	Modulation of the Innate Immune Response by NMDA Receptors Has Neuropathological Consequences. Journal of Neuroscience, 2003, 23, 11094-11103.	3.6	38
33	Human platelet nitric oxide synthase activity: an optimized method. BJPS: Brazilian Journal of Pharmaceutical Sciences, 2002, 38, 305-313.	0.5	1
34	Panic disorder patients have reduced cyclic AMP in platelets. Journal of Psychiatric Research, 2002, 36, 105-110.	3.1	10
35	Influence of age on nitric oxide modulatory action on Na+, K+-ATPase activity through cyclic GMP pathway in proximal rat trachea. European Journal of Pharmacology, 2000, 388, 1-7.	3.5	12
36	Fencamfamine modulates sodium, potassium-ATPase through cyclic AMP and cyclic AMP-dependent protein kinase in rat striatum. Journal of Neural Transmission, 1998, 105, 549-560.	2.8	11