

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7084465/publications.pdf Version: 2024-02-01

PENC ZOU

#	Article	IF	CITATIONS
1	Metabolic incorporation of electron-rich ribonucleosides enhances APEX-seq for profiling spatially restricted nascent transcriptome. Cell Chemical Biology, 2022, 29, 1218-1231.e8.	5.2	7
2	Photocatalytic Chemical Crosslinking for Profiling RNA–Protein Interactions in Living Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
3	O-GlcNAcylation modulates liquid–liquid phase separation of SynGAP/PSD-95. Nature Chemistry, 2022, 14, 831-840.	13.6	27
4	Proteomic Mapping and Targeting of Mitotic Pericentriolar Material in Tumors Bearing Centrosome Amplification. Cancer Research, 2022, 82, 2576-2592.	0.9	5
5	The evolving capabilities of enzyme-mediated proximity labeling. Current Opinion in Chemical Biology, 2021, 60, 30-38.	6.1	33
6	COPII mitigates ER stress by promoting formation of ER whorls. Cell Research, 2021, 31, 141-156.	12.0	36
7	Spatiotemporal profiling of cytosolic signaling complexes in living cells by selective proximity proteomics. Nature Communications, 2021, 12, 71.	12.8	43
8	A far-red hybrid voltage indicator enabled by bioorthogonal engineering of rhodopsin on live neurons. Nature Chemistry, 2021, 13, 472-479.	13.6	45
9	Spatially resolved cell polarity proteomics of a human epiblast model. Science Advances, 2021, 7, .	10.3	14
10	Inhibition of α-Synuclein Accumulation Improves Neuronal Apoptosis and Delayed Postoperative Cognitive Recovery in Aged Mice. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-21.	4.0	10
11	Spatiotemporally resolved subcellular phosphoproteomics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
12	APEX2â€based Proximity Labeling of Atox1 Identifies CRIP2 as a Nuclear Copperâ€binding Protein that Regulates Autophagy Activation. Angewandte Chemie - International Edition, 2021, 60, 25346-25355.	13.8	21
13	Targeting cytokinesis bridge proteins to kill high-CIN type tumors. Fundamental Research, 2021, 1, 752-766.	3.3	5
14	Bringing together the best of chemistry and biology: hybrid indicators for imaging neuronal membrane potential. Journal of Neuroscience Methods, 2021, 363, 109348.	2.5	5
15	Genome-Wide Mapping of Oxidative DNA Damage via Engineering of 8-Oxoguanine DNA Glycosylase. Biochemistry, 2020, 59, 85-89.	2.5	32
16	Chromophoreâ€Assisted Proximity Labeling of DNA Reveals Chromosomal Organization in Living Cells. Angewandte Chemie, 2020, 132, 23133-23137.	2.0	2
17	Chromophoreâ€Assisted Proximity Labeling of DNA Reveals Chromosomal Organization in Living Cells. Angewandte Chemie - International Edition, 2020, 59, 22933-22937.	13.8	8
18	Protocol for Proximity-Dependent Proteomic Profiling in Yeast Cells by APEX and Alk-Ph Probe. STAR Protocols, 2020, 1, 100137.	1.2	4

Peng Zou

#	Article	IF	CITATIONS
19	A Clickable APEX Probe for Proximity-Dependent Proteomic Profiling in Yeast. Cell Chemical Biology, 2020, 27, 858-865.e8.	5.2	33
20	Exosome α-Synuclein Release in Plasma May be Associated With Postoperative Delirium in Hip Fracture Patients. Frontiers in Aging Neuroscience, 2020, 12, 67.	3.4	17
21	Expanding APEX2 Substrates for Proximityâ€Dependent Labeling of Nucleic Acids and Proteins in Living Cells. Angewandte Chemie, 2019, 131, 11889-11893.	2.0	6
22	Imaging Neuronal Activity with Fast and Sensitive Red-Shifted Electrochromic FRET Indicators. ACS Chemical Neuroscience, 2019, 10, 4768-4775.	3.5	10
23	Dynamic modifications of biomacromolecules: mechanism and chemical interventions. Science China Life Sciences, 2019, 62, 1459-1471.	4.9	14
24	Mapping spatial transcriptome with light-activated proximity-dependent RNA labeling. Nature Chemical Biology, 2019, 15, 1110-1119.	8.0	72
25	Expanding APEX2 Substrates for Proximityâ€Dependent Labeling of Nucleic Acids and Proteins in Living Cells. Angewandte Chemie - International Edition, 2019, 58, 11763-11767.	13.8	55
26	MRGPRX4 is a bile acid receptor for human cholestatic itch. ELife, 2019, 8, .	6.0	86
27	Beyond Fluorescent Proteins: Hybrid and Bioluminescent Indicators for Imaging Neural Activities. ACS Chemical Neuroscience, 2018, 9, 639-650.	3.5	22
28	Hybrid Indicators for Fast and Sensitive Voltage Imaging. Angewandte Chemie - International Edition, 2018, 57, 3949-3953.	13.8	34
29	Membrane insertion of—and membrane potential sensing by—semiconductor voltage nanosensors: Feasibility demonstration. Science Advances, 2018, 4, e1601453.	10.3	33
30	Hybrid Indicators for Fast and Sensitive Voltage Imaging. Angewandte Chemie, 2018, 130, 4013-4017.	2.0	4
31	All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS. Stem Cell Reports, 2018, 10, 1991-2004.	4.8	48
32	Voltage imaging with genetically encoded indicators. Current Opinion in Chemical Biology, 2017, 39, 1-10.	6.1	156
33	Genetically-encoded voltage indicators. Chinese Chemical Letters, 2017, 28, 1925-1928.	9.0	7
34	A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices. Journal of Neuroscience, 2016, 36, 2458-2472.	3.6	137
35	Bright and fast multicoloured voltage reporters via electrochromic FRET. Nature Communications, 2014, 5, 4625.	12.8	175
36	Proteomic Mapping of the Human Mitochondrial Intermembrane Space in Live Cells via Ratiometric APEX Tagging. Molecular Cell, 2014, 55, 332-341.	9.7	414

Peng Zou

#	ARTICLE	IF	CITATIONS
37	All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nature Methods, 2014, 11, 825-833.	19.0	666
38	Proteomic Mapping of Mitochondria in Living Cells via Spatially Restricted Enzymatic Tagging. Science, 2013, 339, 1328-1331.	12.6	1,023
39	IDOL Stimulates Clathrin-Independent Endocytosis and Multivesicular Body-Mediated Lysosomal Degradation of the Low-Density Lipoprotein Receptor. Molecular and Cellular Biology, 2013, 33, 1503-1514.	2.3	68
40	Foldon unfolding mediates the interconversion between M ^{pro} -C monomer and 3D domain-swapped dimer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14900-14905.	7.1	27
41	Siteâ€Specific Protein Modification Using Lipoic Acid Ligase and Bisâ€Aryl Hydrazone Formation. ChemBioChem, 2012, 13, 888-894.	2.6	58
42	Imaging LDL Receptor Oligomerization during Endocytosis Using a Co-internalization Assay. ACS Chemical Biology, 2011, 6, 308-313.	3.4	23
43	The heparin-binding domain of HB-EGF mediates localization to sites of cell-cell contact and prevents HB-EGF proteolytic release. Journal of Cell Science, 2010, 123, 2308-2318.	2.0	40
44	Câ€ŧerminal domain of SARS oV main protease can form a 3D domainâ€swapped dimer. Protein Science, 2009, 18, 839-844.	7.6	24
45	Without Its N-Finger, the Main Protease of Severe Acute Respiratory Syndrome Coronavirus Can Form a Novel Dimer through Its C-Terminal Domain. Journal of Virology, 2008, 82, 4227-4234.	3.4	63
46	Photocatalytic Chemical Crosslinking for Profiling RNA–Protein Interactions in Living Cells. Angewandte Chemie, 0, , .	2.0	4