Katalin Andrea Wilkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7083320/publications.pdf Version: 2024-02-01

		31976	30087
141	11,539	53	103
papers	citations	h-index	g-index
152	152	152	10668
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rapid, simplified whole blood-based multiparameter assay to quantify and phenotype SARS-CoV-2-specific T-cells. European Respiratory Journal, 2022, 59, 2100285.	6.7	14
2	Immune responses following third COVID-19 vaccination are reduced in patients with hematological malignancies compared to patients with solid cancer. Cancer Cell, 2022, 40, 114-116.	16.8	50
3	Evaluation of Host Serum Protein Biomarkers of Tuberculosis in sub-Saharan Africa. Frontiers in Immunology, 2021, 12, 639174.	4.8	21
4	Abstract S03-02: Adaptive immunity to SARS-CoV-2 in cancer patients: The CAPTURE study. , 2021, , .		0
5	Tuberculosis infection and disease in South African adolescents with perinatally acquired HIV on antiretroviral therapy: a cohort study. Journal of the International AIDS Society, 2021, 24, e25671.	3.0	9
6	Functional and Activation Profiles of Mucosal-Associated Invariant T Cells in Patients With Tuberculosis and HIV in a High Endemic Setting. Frontiers in Immunology, 2021, 12, 648216.	4.8	5
7	Antiretroviral Treatment-Induced Decrease in Immune Activation Contributes to Reduced Susceptibility to Tuberculosis in HIV-1/Mtb Co-infected Persons. Frontiers in Immunology, 2021, 12, 645446.	4.8	5
8	Cytokine release syndrome in a patient with colorectal cancer after vaccination with BNT162b2. Nature Medicine, 2021, 27, 1362-1366.	30.7	70
9	Relationship of SARS-CoV-2–specific CD4 response to COVID-19 severity and impact of HIV-1 and tuberculosis coinfection. Journal of Clinical Investigation, 2021, 131, .	8.2	113
10	Inflammatory profile of patients with tuberculosis with or without HIV-1 co-infection: a prospective cohort study and immunological network analysis. Lancet Microbe, The, 2021, 2, e375-e385.	7.3	12
11	Functional antibody and T cell immunity following SARS-CoV-2 infection, including by variants of concern, in patients with cancer: the CAPTURE study. Nature Cancer, 2021, 2, 1321-1337.	13.2	66
12	Adaptive immunity and neutralizing antibodies against SARS-CoV-2 variants of concern following vaccination in patients with cancer: the CAPTURE study. Nature Cancer, 2021, 2, 1305-1320.	13.2	123
13	Elevated Matrix Metalloproteinase Concentrations Offer Novel Insight Into Their Role in Pediatric Tuberculous Meningitis. Journal of the Pediatric Infectious Diseases Society, 2020, 9, 82-86.	1.3	6
14	Invariant Natural Killer T-cell Dynamics in Human Immunodeficiency Virus–associated Tuberculosis. Clinical Infectious Diseases, 2020, 70, 1865-1874.	5.8	15
15	Tuberculosis Antigen-Specific T-Cell Responses During the First 6 Months of Antiretroviral Treatment. Journal of Infectious Diseases, 2020, 221, 162-167.	4.0	9
16	Targeting Unconventional T Cells for Vaccination against Tuberculosis. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 401-402.	2.9	1
17	The immunopathogenesis of tuberculous pericarditis. Microbes and Infection, 2020, 22, 172-181.	1.9	9
18	Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-î±. ELife, 2020, 9, .	6.0	76

#	Article	IF	CITATIONS
19	Tuberculous meningitis in children is characterized by compartmentalized immune responses and neural excitotoxicity. Nature Communications, 2019, 10, 3767.	12.8	52
20	Clinical, microbiologic, and immunologic determinants of mortality in hospitalized patients with HIV-associated tuberculosis: A prospective cohort study. PLoS Medicine, 2019, 16, e1002840.	8.4	48
21	Matrix Metalloproteinases in Pulmonary and Central Nervous System Tuberculosis—A Review. International Journal of Molecular Sciences, 2019, 20, 1350.	4.1	34
22	Plasma Biomarkers to Detect Prevalent or Predict Progressive Tuberculosis Associated With Human Immunodeficiency Virus–1. Clinical Infectious Diseases, 2019, 69, 295-305.	5.8	10
23	The Immune Response to <i>Mycobacterium tuberculosis</i> in HIV-1-Coinfected Persons. Annual Review of Immunology, 2018, 36, 603-638.	21.8	85
24	Contribution of APCs to mucosal-associated invariant T cell activation in infectious disease and cancer. Innate Immunity, 2018, 24, 192-202.	2.4	8
25	Complement pathway gene activation and rising circulating immune complexes characterize early disease in HIV-associated tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E964-E973.	7.1	96
26	Effect of prednisolone on inflammatory markers in pericardial tuberculosis: A pilot study. IJC Heart and Vasculature, 2018, 18, 104-108.	1.1	8
27	Neutrophil Activation and Enhanced Release of Granule Products in HIV-TB Immune Reconstitution Inflammatory Syndrome. Journal of Acquired Immune Deficiency Syndromes (1999), 2018, 77, 221-229.	2.1	23
28	The effect of antiretroviral treatment on selected genes in whole blood from HIV-infected adults sensitised by Mycobacterium tuberculosis. PLoS ONE, 2018, 13, e0209516.	2.5	3
29	Differential Effect of Viable Versus Necrotic Neutrophils on Mycobacterium tuberculosis Growth and Cytokine Induction in Whole Blood. Frontiers in Immunology, 2018, 9, 903.	4.8	40
30	Hemostatic changes associate with mortality in hospitalized patients with HIV-associated tuberculosis: a prospective cohort study. Journal of Infectious Diseases, 2017, 215, jiw532.	4.0	19
31	Inflammasome activation underlies central nervous system deterioration in HIV-associated tuberculosis. Journal of Infectious Diseases, 2017, 215, jiw561.	4.0	57
32	Matrix Degradation in Human Immunodeficiency Virus Type 1–Associated Tuberculosis and Tuberculosis Immune Reconstitution Inflammatory Syndrome: A Prospective Observational Study. Clinical Infectious Diseases, 2017, 65, 121-132.	5.8	50
33	Biomarkers of Cerebral Injury and Inflammation in Pediatric Tuberculous Meningitis. Clinical Infectious Diseases, 2017, 65, 1298-1307.	5.8	67
34	Mortality in Severe Human Immunodeficiency Virus-Tuberculosis Associates With Innate Immune Activation and Dysfunction of Monocytes. Clinical Infectious Diseases, 2017, 65, 73-82.	5.8	19
35	The CSF Immune Response in HIV-1–Associated Cryptococcal Meningitis: Macrophage Activation, Correlates of Disease Severity, and Effect of Antiretroviral Therapy. Journal of Acquired Immune Deficiency Syndromes (1999), 2017, 75, 299-307.	2.1	23
36	The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition. Microbes and Infection, 2017, 19, 177-192.	1.9	66

#	Article	IF	CITATIONS
37	Mycobacterium tuberculosis Induction of Heme Oxygenase-1 Expression Is Dependent on Oxidative Stress and Reflects Treatment Outcomes. Frontiers in Immunology, 2017, 8, 542.	4.8	37
38	TBVAC2020: Advancing Tuberculosis Vaccines from Discovery to Clinical Development. Frontiers in Immunology, 2017, 8, 1203.	4.8	44
39	Biomarkers for Identifying Risk of Immune Reconstitution Inflammatory Syndrome. EBioMedicine, 2016, 4, 9-10.	6.1	1
40	Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F]fluoro-D-glucose positron emission and computed tomography. Nature Medicine, 2016, 22, 1090-1093.	30.7	166
41	QuantiFERON conversion following tuberculin administration is common in HIV infectionÂand relates to baseline response. BMC Infectious Diseases, 2016, 16, 545.	2.9	8
42	Brief Report: HIV-1 Infection Impairs CD16 and CD35 Mediated Opsonophagocytosis of Mycobacterium tuberculosis by Human Neutrophils. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 73, 263-267.	2.1	4
43	Activation Profile of <i>Mycobacterium tuberculosis</i> –Specific CD4 ⁺ T Cells Reflects Disease Activity Irrespective of HIV Status. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1307-1310.	5.6	60
44	A Glucuronoxylomannan-Associated Immune Signature, Characterized by Monocyte Deactivation and an Increased Interleukin 10 Level, Is a Predictor of Death in Cryptococcal Meningitis. Journal of Infectious Diseases, 2016, 213, 1725-1734.	4.0	37
45	Population tailored modification of tuberculosis specific interferon-gamma release assay. Journal of Infection, 2016, 72, 179-188.	3.3	23
46	Kinetics of Mycobacterium tuberculosis-specific IFN-Î ³ responses and sputum bacillary clearance in HIV-infected adults during treatment of pulmonary tuberculosis. Tuberculosis, 2015, 95, 463-469.	1.9	3
47	Raised Venous Lactate and Markers of Intestinal Translocation Are Associated With Mortality Among In-Patients With HIV-Associated TB in Rural South Africa. Journal of Acquired Immune Deficiency Syndromes (1999), 2015, 70, 406-413.	2.1	17
48	A Compartmentalized Profibrotic Immune Response Characterizes Pericardial Tuberculosis, Irrespective of HIV-1 Infection. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 1518-1521.	5.6	14
49	Cytotoxic Mediators in Paradoxical HIV–Tuberculosis Immune Reconstitution Inflammatory Syndrome. Journal of Immunology, 2015, 194, 1748-1754.	0.8	31
50	Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial. Lancet Respiratory Medicine,the, 2015, 3, 190-200.	10.7	122
51	HIV–tuberculosis-associated immune reconstitution inflammatory syndrome is characterized by Toll-like receptor and inflammasome signalling. Nature Communications, 2015, 6, 8451.	12.8	81
52	Effect of Antiretroviral Therapy on HIV-mediated Impairment of the Neutrophil Antimycobacterial Response. Annals of the American Thoracic Society, 2015, 12, 1627-37.	3.2	22
53	Interleukin-17 mediated differences in the pathogenesis of HIV-1-associated tuberculous and cryptococcal meningitis. Aids, 2015, 30, 1.	2.2	19
54	Neutrophil-Associated Central Nervous System Inflammation in Tuberculous Meningitis Immune Reconstitution Inflammatory Syndrome. Clinical Infectious Diseases, 2014, 59, 1638-1647.	5.8	68

#	Article	IF	CITATIONS
55	Mycobacterial Antigen Driven Activation of CD14++CD16â^' Monocytes Is a Predictor of Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome. PLoS Pathogens, 2014, 10, e1004433.	4.7	111
56	Matrix metalloproteinases and tissue damage in HIV â€ŧuberculosis immune reconstitution inflammatory syndrome. European Journal of Immunology, 2014, 44, 127-136.	2.9	48
57	Plasma cytokine profiles in HIV-1 infected patients developing neuropathic symptoms shortly after commencing antiretroviral therapy: a case-control study. BMC Infectious Diseases, 2014, 14, 71.	2.9	19
58	Isoniazid plus antiretroviral therapy to prevent tuberculosis: a randomised double-blind, placebo-controlled trial. Lancet, The, 2014, 384, 682-690.	13.7	229
59	A novel assay of antimycobacterial activity and phagocytosis by human neutrophils. Tuberculosis, 2013, 93, 167-178.	1.9	16
60	Frequency, Severity, and Prediction of Tuberculous Meningitis Immune Reconstitution Inflammatory Syndrome. Clinical Infectious Diseases, 2013, 56, 450-460.	5.8	162
61	Role of the Interleukin 10 Family of Cytokines in Patients With Immune Reconstitution Inflammatory Syndrome Associated With HIV Infection and Tuberculosis. Journal of Infectious Diseases, 2013, 207, 1148-1156.	4.0	28
62	Transcriptional Blood Signatures Distinguish Pulmonary Tuberculosis, Pulmonary Sarcoidosis, Pneumonias and Lung Cancers. PLoS ONE, 2013, 8, e70630.	2.5	254
63	Impairment of IFN-Gamma Response to Synthetic Peptides of Mycobacterium tuberculosis in a 7-Day Whole Blood Assay. PLoS ONE, 2013, 8, e71351.	2.5	5
64	Prevalence, Hemodynamics, and Cytokine Profile of Effusive-Constrictive Pericarditis in Patients with Tuberculous Pericardial Effusion. PLoS ONE, 2013, 8, e77532.	2.5	31
65	HIV-Associated Tuberculosis 2012. Clinical and Developmental Immunology, 2012, 2012, 1-2.	3.3	2
66	Interferon release does not add discriminatory value to smear-negative HIV-tuberculosis algorithms. European Respiratory Journal, 2012, 39, 163-171.	6.7	26
67	Scientific letter: Ac-SDKP (N-acetyl-seryl-aspartyl-lysyl-proline) and Galectin-3 levels in tuberculous pericardial effusion: implications for pathogenesis and prevention of pericardial constriction. Heart, 2012, 98, 1326.1-1328.	2.9	16
68	Sebum Transforming Growth Factor β1 Induced by Hair Products. Archives of Dermatology, 2012, 148, 764-6.	1.4	1
69	Corticosteroid Therapy, Vitamin D Status, and Inflammatory Cytokine Profile in the HIV-Tuberculosis Immune Reconstitution Inflammatory Syndrome. Clinical Infectious Diseases, 2012, 55, 1004-1011.	5.8	70
70	Risk Factors Associated with Indeterminate Gamma Interferon Responses in the Assessment of Latent Tuberculosis Infection in a High-Incidence Environment. Vaccine Journal, 2012, 19, 1243-1247.	3.1	34
71	Bioinformatic and Empirical Analysis of Novel Hypoxia-Inducible Targets of the Human Antituberculosis T Cell Response. Journal of Immunology, 2012, 189, 5867-5876.	0.8	44
72	Corticosteroid-modulated Immune Activation in the Tuberculosis Immune Reconstitution Inflammatory Syndrome. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 369-377.	5.6	75

#	Article	IF	CITATIONS
73	Baseline sebum ILâ€1α is higher than expected in afroâ€textured hair: a risk factor for hair loss?*. Journal of Cosmetic Dermatology, 2012, 11, 9-16.	1.6	16
74	Predictive value of interferon-Î ³ release assays for incident active tuberculosis: a systematic review and meta-analysis. Lancet Infectious Diseases, The, 2012, 12, 45-55.	9.1	441
75	Conserved Immune Recognition Hierarchy of Mycobacterial PE/PPE Proteins during Infection in Natural Hosts. PLoS ONE, 2012, 7, e40890.	2.5	50
76	Detectable Changes in The Blood Transcriptome Are Present after Two Weeks of Antituberculosis Therapy. PLoS ONE, 2012, 7, e46191.	2.5	190
77	Altered Ratio of IFN-γ/IL-10 in Patients with Drug Resistant Mycobacterium tuberculosis and HIV- Tuberculosis Immune Reconstitution Inflammatory Syndrome. PLoS ONE, 2012, 7, e46481.	2.5	29
78	Smoking, BCG and Employment and the Risk of Tuberculosis Infection in HIV-Infected Persons in South Africa. PLoS ONE, 2012, 7, e47072.	2.5	28
79	Immunological characterisation of an unmasking TB-IRIS case. South African Medical Journal, 2012, 102, 512.	0.6	12
80	HIVâ€1 infection alters CD4 ⁺ memory Tâ€cell phenotype at the site of disease in extrapulmonary tuberculosis. European Journal of Immunology, 2012, 42, 147-157.	2.9	38
81	Modern Lineages of Mycobacterium tuberculosis Exhibit Lineage-Specific Patterns of Growth and Cytokine Induction in Human Monocyte-Derived Macrophages. PLoS ONE, 2012, 7, e43170.	2.5	72
82	A Recent HIV Diagnosis Is Associated with Non-Completion of Isoniazid Preventive Therapy in an HIV-Infected Cohort in Cape Town. PLoS ONE, 2012, 7, e52489.	2.5	13
83	Reciprocal seasonal variation in vitamin D status and tuberculosis notifications in Cape Town, South Africa. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19013-19017.	7.1	174
84	Predominance of interleukin-22 over interleukin-17 at the site of disease in human tuberculosis. Tuberculosis, 2011, 91, 587-593.	1.9	71
85	Programmed death ligand 1 is overâ€expressed by neutrophils in the blood of patients with active tuberculosis. European Journal of Immunology, 2011, 41, 1941-1947.	2.9	104
86	Hypercytokinaemia accompanies HIV-tuberculosis immune reconstitution inflammatory syndrome. European Respiratory Journal, 2011, 37, 1248-1259.	6.7	130
87	High prevalence of subclinical tuberculosis in HIV-1-infected persons without advanced immunodeficiency: implications for TB screening. Thorax, 2011, 66, 669-673.	5.6	81
88	Human Immunodeficiency Virus-Associated Tuberculosis. Clinical and Developmental Immunology, 2011, 2011, 1-3.	3.3	1
89	Immune Responses to the Enduring Hypoxic Response Antigen Rv0188 Are Preferentially Detected in Mycobacterium bovis Infected Cattle with Low Pathology. PLoS ONE, 2011, 6, e21371.	2.5	23
90	Polyfunctional T cells in human tuberculosis. European Journal of Immunology, 2010, 40, 2139-2142.	2.9	63

#	Article	IF	CITATIONS
91	Reversion and conversion of Mycobacterium tuberculosis IFN-Î ³ ELISpot results during anti-tuberculous treatment in HIV-infected children. BMC Infectious Diseases, 2010, 10, 138.	2.9	27
92	An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466, 973-977.	27.8	1,632
93	Enhanced diagnosis of HIV-1-associated tuberculosis by relating T-SPOT.TB and CD4 counts. European Respiratory Journal, 2010, 36, 594-600.	6.7	29
94	Association between Gc genotype and susceptibility to TB is dependent on vitamin D status. European Respiratory Journal, 2010, 35, 1106-1112.	6.7	110
95	Hypoxia Induces an Immunodominant Target of Tuberculosis Specific T Cells Absent from Common BCG Vaccines. PLoS Pathogens, 2010, 6, e1001237.	4.7	35
96	Association between Tuberculin Skin Test Reactivity, the Memory CD4 Cell Subset, and Circulating FoxP3-Expressing Cells in HIV-Infected Persons. Journal of Infectious Diseases, 2009, 199, 702-710.	4.0	34
97	Dissection of Regenerating T-Cell Responses against Tuberculosis in HIV-infected Adults Sensitized byMycobacterium tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 674-683.	5.6	60
98	Novel Relationship between Tuberculosis Immune Reconstitution Inflammatory Syndrome and Antitubercular Drug Resistance. Clinical Infectious Diseases, 2009, 48, 667-676.	5.8	93
99	Comparison of T-SPOT. <i>TB</i> Assay and Tuberculin Skin Test for the Evaluation of Young Children at High Risk for Tuberculosis in a Community Setting. Pediatrics, 2009, 123, 38-43.	2.1	186
100	Genetic determination of the effect of post-translational modification on the innate immune response to the 19 kDa lipoprotein of Mycobacterium tuberculosis. BMC Microbiology, 2009, 9, 93.	3.3	20
101	1α,25â€dihydroxyvitamin D ₃ inhibits matrix metalloproteinases induced by <i>Mycobacterium tuberculosis</i> infection. Immunology, 2009, 127, 539-548.	4.4	141
102	Detection of tuberculosis in HIV-infected children using an enzyme-linked immunospot assay. Aids, 2009, 23, 961-969.	2.2	35
103	Neutrophil-mediated innate immune resistance to mycobacteria. Journal of Infection, 2008, 56, 301-302.	3.3	0
104	Reduction of Chemokine Secretion in Response to Mycobacteria in Infliximab-Treated Patients. Vaccine Journal, 2008, 15, 506-512.	3.1	32
105	Type 1 Helper T Cells and FoxP3-positive T Cells in HIV–Tuberculosis-associated Immune Reconstitution Inflammatory Syndrome. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1083-1089.	5.6	140
106	Clinical, Immunological, and Epidemiological Importance of Antituberculosis T Cell Responses in HIV-Infected Africans. Clinical Infectious Diseases, 2007, 44, 1639-1646.	5.8	79
107	Effect of HIV-1 Infection on T-Cell–based and Skin Test Detection of Tuberculosis Infection. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 514-520.	5.6	195
108	IFN-γ- and TNF-Independent Vitamin D-Inducible Human Suppression of Mycobacteria: The Role of Cathelicidin LL-37. Journal of Immunology, 2007, 178, 7190-7198.	0.8	383

#	Article	IF	CITATIONS
109	A Single Dose of Vitamin D Enhances Immunity to Mycobacteria. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 208-213.	5.6	370
110	Enhanced Ex Vivo Stimulation of Mycobacterium tuberculosis -Specific T Cells in Human Immunodeficiency Virus-Infected Persons via Antigen Delivery by the Bordetella pertussis Adenylate Cyclase Vector. Vaccine Journal, 2007, 14, 847-854.	3.1	14
111	Neutrophil-mediated innate immune resistance to mycobacteria. Journal of Clinical Investigation, 2007, 117, 1988-1994.	8.2	352
112	A deletion defining a common Asian lineage of <i>Mycobacterium tuberculosis</i> associates with immune subversion. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15594-15598.	7.1	100
113	Transmission ofMycobacterium tuberculosisUndetected by Tuberculin Skin Testing. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 1038-1042.	5.6	31
114	Effect of Treatment of Latent Tuberculosis Infection on the T Cell Response to <i>Mycobacterium tuberculosis</i> Antigens. Journal of Infectious Diseases, 2006, 193, 354-359.	4.0	109
115	Effect of Deletion or Overexpression of the 19-Kilodalton Lipoprotein Rv3763 on the Innate Response to Mycobacterium tuberculosis. Infection and Immunity, 2005, 73, 6831-6837.	2.2	37
116	Ex Vivo Characterization of Early Secretory Antigenic Target 6-Specific T Cells at Sites of Active Disease in Pleural Tuberculosis. Clinical Infectious Diseases, 2005, 40, 184-187.	5.8	155
117	Infection Biology of a Novel α-Crystallin of <i>Mycobacterium tuberculosis</i> : Acr2. Journal of Immunology, 2005, 174, 4237-4243.	0.8	64
118	Efficient Ex Vivo Stimulation of Mycobacterium tuberculosis-Specific T Cells by Genetically Detoxified Bordetella pertussis Adenylate Cyclase Antigen Toxoids. Infection and Immunity, 2005, 73, 2991-2998.	2.2	14
119	Acquired predisposition to mycobacterial disease due to autoantibodies to IFN-Î ³ . Journal of Clinical Investigation, 2005, 115, 2480-2488.	8.2	206
120	Recognition of Mycobacterial Antigens Delivered by Genetically Detoxified Bordetella pertussis Adenylate Cyclase by T Cells from Cattle with Bovine Tuberculosis. Infection and Immunity, 2004, 72, 6255-6261.	2.2	16
121	Gamma Interferon-Based Immunodiagnosis of Tuberculosis: Comparison between Whole-Blood and Enzyme-Linked Immunospot Methods. Journal of Clinical Microbiology, 2004, 42, 829-831.	3.9	55
122	The stress-responsive chaperone α-crystallin 2 is required for pathogenesis of Mycobacterium tuberculosis. Molecular Microbiology, 2004, 55, 1127-1137.	2.5	77
123	Rapid detection of active and latent tuberculosis infection in HIV-positive individuals by enumeration of Mycobacterium tuberculosis-specific T cells. Aids, 2002, 16, 2285-2293.	2.2	276
124	Enhanced contact tracing and spatial tracking of Mycobacterium tuberculosis infection by enumeration of antigen-specific T cells. Lancet, The, 2001, 357, 2017-2021.	13.7	365
125	An increase in expression of a Mycobacterium tuberculosis mycolyl transferase gene (fbpB) occurs early after infection of human monocytes. Molecular Microbiology, 2001, 39, 813-821.	2.5	54
126	Direct Ex Vivo Analysis of Antigen-Specific IFN-γ-Secreting CD4 T Cells in <i>Mycobacterium tuberculosis</i> -Infected Individuals: Associations with Clinical Disease State and Effect of Treatment. Journal of Immunology, 2001, 167, 5217-5225.	0.8	329

#	Article	IF	CITATIONS
127	Enumeration of T Cells Specific for RD1â€Encoded Antigens Suggests a High Prevalence of Latent <i>Mycobacterium tuberculosis</i> Infection in Healthy Urban Indians. Journal of Infectious Diseases, 2001, 183, 469-477.	4.0	335
128	High frequencies of circulating IFN-Î ³ -secreting CD8 cytotoxic T cells specific for a novel MHC class I-restrictedMycobacterium tuberculosis epitope inM. tuberculosis-infected subjects without disease. European Journal of Immunology, 2000, 30, 2713-2721.	2.9	94
129	Enhancement of the human T cell response to culture filtrate fractions of Mycobacterium tuberculosis by microspheres. Journal of Immunological Methods, 2000, 235, 1-9.	1.4	17
130	Latency-Associated Peptide of Transforming Growth Factor β Enhances Mycobacteriocidal Immunity in the Lung during Mycobacterium bovis BCG Infection in C57BL/6 Mice. Infection and Immunity, 2000, 68, 6505-6508.	2.2	19
131	Specificity and Function of Immunogenic Peptides from the 35-Kilodalton Protein of <i>Mycobacterium leprae</i> . Infection and Immunity, 1999, 67, 1501-1504.	2.2	8
132	Immune Responses to Recombinant Proteins ofMycobacterium leprae. Journal of Infectious Diseases, 1999, 179, 1034-1037.	4.0	8
133	Enhancement of the T cell response to a mycobacterial peptide by conjugation to synthetic branched polypeptide. European Journal of Immunology, 1999, 29, 2788-2796.	2.9	20
134	Induction of cellular immunity to a mycobacterial antigen adsorbed on lamellar particles of lactide polymers. Vaccine, 1999, 17, 1814-1819.	3.8	48
135	Interaction of <i>Mycobacterium tuberculosis</i> -Induced Transforming Growth Factor β1 and Interleukin-10. Infection and Immunity, 1999, 67, 5730-5735.	2.2	83
136	Human T- and B-Cell Reactivity to the 16 kDa alpha-Crystallin Protein of Mycobacterium tuberculosis. Scandinavian Journal of Immunology, 1998, 48, 403-409.	2.7	79
137	Synthesis and in Vitro T-Cell Immunogenicity of Conjugates with Dual Specificity:Â Attachment of Epitope Peptides of 16 and 38 kDa Proteins fromMycobacterium tuberculosisto Branched Polypeptide. Bioconjugate Chemistry, 1998, 9, 539-547.	3.6	25
138	Peptide‧pecific T Cell Response to <i>Mycobacterium tuberculosis:</i> Clinical Spectrum, Compartmentalization, and Effect of Chemotherapy. Journal of Infectious Diseases, 1998, 178, 760-768.	4.0	69
139	38 000 MW antigenâ€specific major histocompatibility complex class I restricted interferonâ€Î³â€secreting CD8+T cells in healthy contacts of tuberculosis. Immunology, 1998, 95, 585-590.	4.4	28
140	Modulation of peptide specific T cell responses by non-native flanking regions. Molecular Immunology, 1997, 34, 1237-1246.	2.2	10
141	Immune Network Analysis Reveals Interleukin-17A Related Responses As Key Contributors to HIV-1 Associated Tuberculosis. SSRN Electronic Journal, 0, , .	0.4	0