
Esther M Verheyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7082983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Gfat1 (zeppelin) and Gfat2, Essential Paralogous Genes Which Encode the Enzymes That Catalyze the Rate-Limiting Step in the Hexosamine Biosynthetic Pathway in Drosophila melanogaster. Cells, 2022, 11, 448.	4.1	3
2	The power of <i>Drosophila</i> in modeling human disease mechanisms. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	20
3	Metabolic reprogramming in cancer: mechanistic insights from <i>Drosophila</i> . DMM Disease Models and Mechanisms, 2021, 14, 1-17.	2.4	9
4	A scalable Drosophila assay for clinical interpretation of human PTEN variants in suppression of PI3K/AKT induced cellular proliferation. PLoS Genetics, 2021, 17, e1009774.	3.5	4
5	Expression of human HIPKs in Drosophila demonstrates their shared and unique functions in a developmental model. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	5
6	Homeodomain-interacting protein kinase (Hipk) plays roles in nervous system and muscle structure and function. PLoS ONE, 2020, 15, e0221006.	2.5	8
7	The nutrient sensor OGT regulates Hipk stability and tumorigenic-like activities in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2004-2013.	7.1	19
8	High specificity and tight spatial restriction of self-biotinylation by DNA and RNA G-Quadruplexes complexed in vitro and in vivo with Heme. Nucleic Acids Research, 2020, 48, 5254-5267.	14.5	18
9	Hyperpolarized mitochondria accumulate in <i>Drosophila</i> Hipk-overexpressing cells to drive tumor-like growth. Journal of Cell Science, 2020, 133, .	2.0	5
10	LRP 6 lets Merlin go in times of nutrient scarcity. EMBO Reports, 2020, 21, e51358.	4.5	1
11	Hipk is required for JAK/STAT activity during development and tumorigenesis. PLoS ONE, 2019, 14, e0226856.	2.5	14
12	Actomyosin contractility modulates Wnt signaling through adherens junction stability. Molecular Biology of the Cell, 2019, 30, 411-426.	2.1	13
13	A positive feedback loop between Myc and aerobic glycolysis sustains tumor growth in a Drosophila tumor model. ELife, 2019, 8, .	6.0	28
14	Homeodomain interacting protein kinase promotes tumorigenesis and metastatic cell behavior. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	20
15	The Protein Phosphatase 4 complex promotes the Notch pathway and <i>wingless</i> transcription. Biology Open, 2017, 6, 1165-1173.	1.2	8
16	Homeodomain-Interacting Protein Kinases. Current Topics in Developmental Biology, 2017, 123, 73-103.	2.2	56
17	Mammary Development and Breast Cancer: A Wnt Perspective. Cancers, 2016, 8, 65.	3.7	91
18	A Novel, Noncanonical BMP Pathway Modulates Synapse Maturation at the Drosophila Neuromuscular Junction. PLoS Genetics, 2016, 12, e1005810.	3.5	45

Esther M Verheyen

#	Article	IF	CITATIONS
19	Ras-activated Dsor1 promotes Wnt signaling in Drosophila development. Development (Cambridge), 2016, 143, e1.1-e1.1.	2.5	0
20	Ras-activated Dsor1 promotes Wnt signaling in Drosophila development. Journal of Cell Science, 2015, 128, 4499-511.	2.0	13
21	The Myopic-Ubpy-Hrs nexus enables endosomal recycling of Frizzled. Molecular Biology of the Cell, 2015, 26, 3329-3342.	2.1	12
22	Ras/MEK/MAPK-mediated regulation of heparin sulphate proteoglycans promotes retinal fate in the Drosophila eye–antennal disc. Developmental Biology, 2015, 402, 109-118.	2.0	5
23	Genome-wide identification of phospho-regulators of Wnt signaling in <i>Drosophila</i> . Development (Cambridge), 2015, 142, 1502-1515.	2.5	28
24	Integrins Regulate Apical Constriction via Microtubule Stabilization in the Drosophila Eye Disc Epithelium. Cell Reports, 2014, 9, 2043-2055.	6.4	38
25	The role of Bro1- domain-containing protein Myopic in endosomal trafficking of Wnt/Wingless. Developmental Biology, 2014, 392, 93-107.	2.0	11
26	Hipk promotes photoreceptor differentiation through the repression of Twin of eyeless and Eyeless expression. Developmental Biology, 2014, 390, 14-25.	2.0	12
27	Nemo promotes Notch-mediated lateral inhibition downstream of proneural factors. Developmental Biology, 2014, 392, 334-343.	2.0	4
28	Hipk proteins dually regulate Wnt/Wingless signal transduction. Fly, 2012, 6, 126-131.	1.7	7
29	Homeodomain-Interacting Protein Kinase Regulates Yorkie Activity to Promote Tissue Growth. Current Biology, 2012, 22, 1582-1586.	3.9	52
30	Wnt/Wingless Signaling in Drosophila. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007930-a007930.	5.5	155
31	Nemo phosphorylates Eyes absent and enhances output from the Eya-Sine oculis transcriptional complex during Drosophila retinal determination. Developmental Biology, 2012, 365, 267-276.	2.0	19
32	Nemo kinase phosphorylates β-catenin to promote ommatidial rotation and connects core PCP factors to E-cadherin–β-catenin. Nature Structural and Molecular Biology, 2011, 18, 665-672.	8.2	43
33	<i>Drosophila</i> homeodomain-interacting protein kinase inhibits the Skp1-Cul1-F-box E3 ligase complex to dually promote Wingless and Hedgehog signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9887-9892.	7.1	44
34	Regulation of Wnt/βâ€catenin signaling by protein kinases. Developmental Dynamics, 2010, 239, 34-44.	1.8	139
35	Wnts as Self-Renewal Factors: Mammary Stem Cells and Beyond. Cell Stem Cell, 2010, 6, 494-495.	11.1	1
36	Nemo phosphorylates Even-skipped and promotes Eve-mediated repression of odd-skipped in even parasegments during Drosophila embryogenesis. Developmental Biology, 2010, 343, 178-189.	2.0	8

ESTHER M VERHEYEN

#	Article	IF	CITATIONS
37	Nemo kinase interacts with Mad to coordinate synaptic growth at the <i>Drosophila</i> neuromuscular junction. Journal of Cell Biology, 2009, 185, 713-725.	5.2	36
38	Homeodomain-interacting protein kinases (Hipks) promote Wnt/Wg signaling through stabilization of β-catenin/Arm and stimulation of target gene expression. Development (Cambridge), 2009, 136, 241-251.	2.5	74
39	Hipk is an essential protein that promotes Notch signal transduction in the Drosophila eye by inhibition of the global co-repressor Groucho. Developmental Biology, 2009, 325, 263-272.	2.0	64
40	Drosophila Nemo Promotes Eye Specification Directed by the Retinal Determination Gene Network. Genetics, 2008, 180, 283-299.	2.9	25
41	Inhibition of Drosophila Wg Signaling Involves Competition between Mad and Armadillo/β-Catenin for dTcf Binding. PLoS ONE, 2008, 3, e3893.	2.5	18
42	Drosophila Nemo antagonizes BMP signaling by phosphorylation of Mad and inhibition of its nuclear accumulation. Development (Cambridge), 2007, 134, 2061-2071.	2.5	57
43	Opposing Effects of Wnt and MAPK on BMP/Smad Signal Duration. Developmental Cell, 2007, 13, 755-756.	7.0	33
44	Nemo is an inducible antagonist of Wingless signaling during Drosophila wing development. Development (Cambridge), 2004, 131, 2911-2920.	2.5	47
45	Characterization of Dir: a putative potassium inward rectifying channel in Drosophila. Mechanisms of Development, 2002, 116, 193-197.	1.7	16
46	Drosophila nemo is an essential gene involved in the regulation of programmed cell death. Mechanisms of Development, 2002, 119, 9-20.	1.7	43
47	The tissue polarity gene nemo carries out multiple roles in patterning during Drosophila development. Mechanisms of Development, 2001, 101, 119-132.	1.7	41
48	Analysis of Dominant Enhancers and Suppressors of Activated <i>Notch</i> in Drosophila. Genetics, 1996, 144, 1127-1141.	2.9	90
49	chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell, 1992, 69, 173-184.	28.9	369
50	Decreases in the relative concentrations of specific hepatocyte plasma membrane proteins during liver regeneration: Down-regulation or dilution?. Developmental Biology, 1991, 143, 258-270.	2.0	35