Andrea Gsur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7082821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular and Pathology Features of Colorectal Tumors and Patient Outcomes Are Associated with <i>Fusobacterium nucleatum</i> and Its Subspecies <i>animalis</i> . Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 210-220.	2.5	19
2	Identification of tumor tissue-derived DNA methylation biomarkers for the detection and therapy response evaluation of metastatic castration resistant prostate cancer in liquid biopsies. Molecular Cancer, 2022, 21, 7.	19.2	10
3	Genetically proxied therapeutic inhibition of antihypertensive drug targets and risk of common cancers: A mendelian randomization analysis. PLoS Medicine, 2022, 19, e1003897.	8.4	30
4	Higher vitamin B6 status is associated with improved survival among patients with stage l–III colorectal cancer. American Journal of Clinical Nutrition, 2022, 116, 303-313.	4.7	2
5	Beyond GWAS of Colorectal Cancer: Evidence of Interaction with Alcohol Consumption and Putative Causal Variant for the 10q24.2 Region. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1077-1089.	2.5	6
6	Genetic Regulation of DNA Methylation Yields Novel Discoveries in GWAS of Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1068-1076.	2.5	1
7	Association between germline variants and somatic mutations in colorectal cancer. Scientific Reports, 2022, 12, .	3.3	1
8	Identifying colorectal cancer caused by biallelic MUTYH pathogenic variants using tumor mutational signatures. Nature Communications, 2022, 13, .	12.8	15
9	Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects. Gastroenterology, 2021, 160, 1164-1178.e6.	1.3	36
10	Lack of an association between gallstone disease and bilirubin levels with risk of colorectal cancer: a Mendelian randomisation analysis. British Journal of Cancer, 2021, 124, 1169-1174.	6.4	6
11	Genetically predicted circulating concentrations of micronutrients and risk of colorectal cancer among individuals of European descent: a Mendelian randomization study. American Journal of Clinical Nutrition, 2021, 113, 1490-1502.	4.7	27
12	Untargeted Metabolomics Reveals Major Differences in the Plasma Metabolome between Colorectal Cancer and Colorectal Adenomas. Metabolites, 2021, 11, 119.	2.9	20
13	Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut, 2021, 70, 1325-1334.	12.1	44
14	Diet quality indices and dietary patterns are associated with plasma metabolites in colorectal cancer patients. European Journal of Nutrition, 2021, 60, 3171-3184.	3.9	8
15	Targeted Plasma Metabolic Profiles and Risk of Recurrence in Stage II and III Colorectal Cancer Patients: Results from an International Cohort Consortium. Metabolites, 2021, 11, 129.	2.9	6
16	Circulating B-vitamin biomarkers and B-vitamin supplement use in relation to quality of life in patients with colorectal cancer: results from the FOCUS consortium. American Journal of Clinical Nutrition, 2021, 113, 1468-1481.	4.7	11
17	Response to Li and Hopper. American Journal of Human Genetics, 2021, 108, 527-529.	6.2	5
18	Polymorphisms within Autophagy-Related Genes Influence the Risk of Developing Colorectal Cancer: A Meta-Analysis of Four Large Cohorts. Cancers, 2021, 13, 1258.	3.7	3

ANDREA GSUR

#	Article	IF	CITATIONS
19	Genome-wide analysis of 944 133 individuals provides insights into the etiology of haemorrhoidal disease. Gut, 2021, 70, 1538-1549.	12.1	21
20	Colorectal Cancer Study of Austria (CORSA): A Population-Based Multicenter Study. Biology, 2021, 10, 722.	2.8	6
21	Circulating tryptophan metabolites and risk of colon cancer: Results from case ontrol and prospective cohort studies. International Journal of Cancer, 2021, 149, 1659-1669.	5.1	22
22	Abstract LB090: Associations of somatically mutated genes and pathways with colorectal cancer specific survival in 4,500 colorectal cancer patients. , 2021, , .		0
23	A Combined Proteomics and Mendelian Randomization Approach to Investigate the Effects of Aspirin-Targeted Proteins on Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 564-575.	2.5	10
24	Salicylic Acid and Risk of Colorectal Cancer: A Two-Sample Mendelian Randomization Study. Nutrients, 2021, 13, 4164.	4.1	3
25	Plasma metabolites associated with colorectal cancer stage: Findings from an international consortium. International Journal of Cancer, 2020, 146, 3256-3266.	5.1	26
26	Modifiable pathways for colorectal cancer: a mendelian randomisation analysis. The Lancet Gastroenterology and Hepatology, 2020, 5, 55-62.	8.1	79
27	Cumulative Burden of Colorectal Cancer–Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer. Gastroenterology, 2020, 158, 1274-1286.e12.	1.3	110
28	Circulating Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3 Associate With Risk of Colorectal Cancer Based on Serologic and Mendelian Randomization Analyses. Gastroenterology, 2020, 158, 1300-1312.e20.	1.3	90
29	Identification of Novel Loci and New Risk Variant in Known Loci for Colorectal Cancer Risk in East Asians. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 477-486.	2.5	25
30	Distinct Molecular Phenotype of Sporadic Colorectal Cancers Among Young Patients Based on Multiomics Analysis. Gastroenterology, 2020, 158, 1155-1158.e2.	1.3	42
31	Circulating Folate and Folic Acid Concentrations: Associations With Colorectal Cancer Recurrence and Survival. JNCI Cancer Spectrum, 2020, 4, pkaa051.	2.9	9
32	Landscape of somatic single nucleotide variants and indels in colorectal cancer and impact on survival. Nature Communications, 2020, 11, 3644.	12.8	55
33	Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk. American Journal of Human Genetics, 2020, 107, 432-444.	6.2	124
34	Host immune genetic variations influence the risk of developing acute myeloid leukaemia: results from the NuCLEAR consortium. Blood Cancer Journal, 2020, 10, 75.	6.2	2
35	Multi-omics Analysis Reveals Adipose–tumor Crosstalk in Patients with Colorectal Cancer. Cancer Prevention Research, 2020, 13, 817-828.	1.5	19
36	Adiposity, metabolites, and colorectal cancer risk: Mendelian randomization study. BMC Medicine, 2020, 18, 396.	5.5	76

ANDREA GSUR

#	Article	IF	CITATIONS
37	Hemochromatosis risk genotype is not associated with colorectal cancer or age at its diagnosis. Human Genetics and Genomics Advances, 2020, 1, 100010.	1.7	3
38	Metabolomics profiling of visceral and abdominal subcutaneous adipose tissue in colorectal cancer patients: results from the ColoCare study. Cancer Causes and Control, 2020, 31, 723-735.	1.8	6
39	Genome-wide association study of germline copy number variations reveals an association with prostate cancer aggressiveness. Mutagenesis, 2020, 35, 283-290.	2.6	3
40	Impact of Pre-Blood Collection Factors on Plasma Metabolomic Profiles. Metabolites, 2020, 10, 213.	2.9	7
41	One-carbon metabolites, B vitamins and associations with systemic inflammation and angiogenesis biomarkers among colorectal cancer patients: results from the ColoCare Study. British Journal of Nutrition, 2020, 123, 1187-1200.	2.3	11
42	Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis. Nature Communications, 2020, 11, 597.	12.8	193
43	Novel Common Genetic Susceptibility Loci for Colorectal Cancer. Journal of the National Cancer Institute, 2019, 111, 146-157.	6.3	129
44	Metabolomics Analytics Workflow for Epidemiological Research: Perspectives from the Consortium of Metabolomics Studies (COMETS). Metabolites, 2019, 9, 145.	2.9	30
45	Plasma metabolites associated with colorectal cancer: A discoveryâ€replication strategy. International Journal of Cancer, 2019, 145, 1221-1231.	5.1	42
46	Genome-wide association analysis of diverticular disease points towards neuromuscular, connective tissue and epithelial pathomechanisms. Gut, 2019, 68, 854-865.	12.1	84
47	Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nature Communications, 2019, 10, 2154.	12.8	172
48	Functional Polymorphisms in DNA Repair Genes Are Associated with Sporadic Colorectal Cancer Susceptibility and Clinical Outcome. International Journal of Molecular Sciences, 2019, 20, 97.	4.1	20
49	Discovery of common and rare genetic risk variants for colorectal cancer. Nature Genetics, 2019, 51, 76-87.	21.4	377
50	The Immunome of Colon Cancer: Functional In Silico Analysis of Antigenic Proteins Deduced from IgG Microarray Profiling. Genomics, Proteomics and Bioinformatics, 2018, 16, 73-84.	6.9	21
51	Leukocyte telomere length throughout the continuum of colorectal carcinogenesis. Oncotarget, 2018, 9, 13582-13592.	1.8	7
52	MNS16A tandem repeat minisatellite of human telomerase gene: functional studies in colorectal, lung and prostate cancer. Oncotarget, 2017, 8, 28021-28027.	1.8	10
53	Bayesian and frequentist analysis of an Austrian genome-wide association study of colorectal cancer and advanced adenomas. Oncotarget, 2017, 8, 98623-98634.	1.8	23
54	lmmune-Signatures for Lung Cancer Diagnostics: Evaluation of Protein Microarray Data Normalization Strategies. Microarrays (Basel, Switzerland), 2015, 4, 162-187.	1.4	14

ANDREA GSUR

#	Article	IF	CITATIONS
55	Diagnostic Performance of Plasma DNA Methylation Profiles in Lung Cancer, Pulmonary Fibrosis and COPD. EBioMedicine, 2015, 2, 929-936.	6.1	83
56	The increased Sprouty4 expression in response to serum is transcriptionally controlled by Specific protein 1. International Journal of Biochemistry and Cell Biology, 2015, 64, 220-228.	2.8	9
57	In nonâ€small cell lung cancer mitogenic signaling leaves Sprouty1 protein levels unaffected. Cell Biochemistry and Function, 2014, 32, 96-100.	2.9	12
58	Expression of microRNA-21 in non-small cell lung cancer tissue increases with disease progression and is likely caused by growth conditional changes during malignant transformation. International Journal of Oncology, 2014, 44, 1325-1334.	3.3	9
59	Integrative analysis of prostate cancer aggressiveness. Prostate, 2013, 73, 1413-1426.	2.3	15
60	Differential Effects of Polymorphic Alleles of <i>FGF Receptor 4</i> on Colon Cancer Growth and Metastasis. Cancer Research, 2012, 72, 5767-5777.	0.9	43
61	Association of genetic variants of human telomerase with colorectal polyps and colorectal cancer risk. Molecular Carcinogenesis, 2012, 51, E176-82.	2.7	34
62	No association of XRCC1 polymorphisms Arg194Trp and Arg399Gln with colorectal cancer risk. Cancer Epidemiology, 2011, 35, e38-e41.	1.9	32
63	MNS16A tandem repeats minisatellite of human telomerase gene: a risk factor for colorectal cancer. Carcinogenesis, 2011, 32, 866-871.	2.8	35
64	Association of IGF1 and IGFBP3 polymorphisms with colorectal polyps and colorectal cancer risk. Cancer Causes and Control, 2010, 21, 91-97.	1.8	51
65	Common genetic polymorphisms of AURKA and prostate cancer risk. Cancer Causes and Control, 2009, 20, 147-152.	1.8	11
66	Genetic polymorphisms and prostate cancer risk. World Journal of Urology, 2004, 21, 414-423.	2.2	50
67	Association of microsomal epoxide hydrolase polymorphisms and lung cancer risk. British Journal of Cancer, 2003, 89, 702-706.	6.4	77
68	Polymorphic CAG repeats in the androgen receptor gene, prostate-specific antigen polymorphism and prostate cancer risk. Carcinogenesis, 2002, 23, 1647-1651.	2.8	67
69	Vitamin D receptor gene polymorphism and prostate cancer risk. Prostate, 2002, 51, 30-34.	2.3	50
70	A polymorphism in the UDP-Glucuronosyltransferase 2B15 gene (D85Y) is not associated with prostate cancer risk. Cancer Epidemiology Biomarkers and Prevention, 2002, 11, 497-8.	2.5	15
71	Polymorphisms of glutathione-S-transferase genes (GSTP1, GSTM1 andGSTT1) and prostate-cancer risk. International Journal of Cancer, 2001, 95, 152-155.	5.1	88
72	Genetic polymorphisms of CYP1A1 and GSTM1 and lung cancer risk. Anticancer Research, 2001, 21, 2237-42.	1.1	24

#	Article	IF	CITATIONS
73	A polymorphism in theCYP17 gene is associated with prostate cancer risk. International Journal of Cancer, 2000, 87, 434-437.	5.1	105
74	Genome-Wide Association Study of Metachronous Colorectal Adenoma Risk among Participants in the Selenium Trial. Nutrition and Cancer, 0, , 1-11.	2.0	0