Jinju Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7081605/publications.pdf

Version: 2024-02-01

172457 214800 2,589 83 29 47 citations h-index g-index papers 87 87 87 3536 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Slippery Liquid-Like Solid Surfaces with Promising Antibiofilm Performance under Both Static and Flow Conditions. ACS Applied Materials & Samp; Interfaces, 2022, 14, 6307-6319.	8.0	35
2	Simultaneous Measurement of Single-Cell Mechanics and Cell-to-Materials Adhesion Using Fluidic Force Microscopy. Langmuir, 2022, 38, 620-628.	3.5	9
3	Coupled CFDâ€DEM modeling to predict how EPS affects bacterial biofilm deformation, recovery and detachment under flow conditions. Biotechnology and Bioengineering, 2022, 119, 2551-2563.	3.3	7
4	CFD–DEM modelling of biofilm streamer oscillations and their cohesive failure in fluid flow. Biotechnology and Bioengineering, 2021, 118, 918-929.	3.3	4
5	A modified Sneddon model for the contact between conical indenters and spherical samples. Journal of Materials Research, 2021, 36, 1762-1771.	2.6	11
6	Modelling the combined effect of surface roughness and topography on bacterial attachment. Journal of Materials Science and Technology, 2021, 81, 151-161.	10.7	18
7	Revealing the nanoindentation response of a single cell using a 3D structural finite element model. Journal of Materials Research, 2021, 36, 2591-2600.	2.6	6
8	Muco-ciliary clearance: A review of modelling techniques. Journal of Biomechanics, 2020, 99, 109578.	2.1	20
9	Bacterial nanotubes mediate bacterial growth on periodic nano-pillars. Soft Matter, 2020, 16, 7613-7623.	2.7	6
10	Antiwetting and Antifouling Performances of Different Lubricant-Infused Slippery Surfaces. Langmuir, 2020, 36, 13396-13407.	3.5	24
11	Intergrated Shape Memory Alloys Soft Actuators with Periodic and Inhomogeneous Deformations by Modulating Elastic Tendon Structures. Advanced Engineering Materials, 2020, 22, 2000640.	3.5	3
12	How does lubricant viscosity affect the wear behaviour of VitE-XLPE articulated against CoCr?. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104067.	3.1	2
13	Nonlinear rheological characteristics of single species bacterial biofilms. Npj Biofilms and Microbiomes, 2020, 6, 19.	6.4	35
14	Modelling bacterial twitching in fluid flows: a CFD-DEM approach. Scientific Reports, 2019, 9, 14540.	3.3	11
15	Hierarchical Rose Petal Surfaces Delay the Early-Stage Bacterial Biofilm Growth. Langmuir, 2019, 35, 14670-14680.	3.5	33
16	Individual Based Model Links Thermodynamics, Chemical Speciation and Environmental Conditions to Microbial Growth. Frontiers in Microbiology, 2019, 10, 1871.	3.5	20
17	Regulating, Measuring, and Modeling the Viscoelasticity of Bacterial Biofilms. Journal of Bacteriology, 2019, 201, .	2.2	33
18	Formation of highly ordered micro fillers in polymeric matrix by electro-field-assisted aligning. RSC Advances, 2019, 9, 15238-15245.	3.6	4

#	Article	IF	Citations
19	NUFEB: A massively parallel simulator for individual-based modelling of microbial communities. PLoS Computational Biology, 2019, 15, e1007125.	3.2	40
20	An asymmetrical dual coating on the stent prepared by ultrasonic atomization. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 825-837.	3.4	8
21	Rheological Characterization of Agarose and Poloxamer 407 (P407) Based Hydrogels. MRS Advances, 2018, 3, 1719-1724.	0.9	6
22	Nanostructured titanium surfaces exhibit recalcitrance towards Staphylococcus epidermidis biofilm formation. Scientific Reports, 2018, 8, 1071.	3.3	97
23	How cell culture conditions affect the microstructure and nanomechanical properties of extracellular matrix formed by immortalized human mesenchymal stem cells: An experimental and modelling study. Materials Science and Engineering C, 2018, 89, 149-159.	7.3	15
24	Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering. Materials Science and Engineering C, 2018, 91, 236-246.	7.3	95
25	Finite element modeling of nanoindentation response of elastic fiber-matrix composites. Journal of Materials Research, 2018, 33, 2494-2503.	2.6	9
26	Mechanical interactions between bacteria and hydrogels. Scientific Reports, 2018, 8, 10893.	3.3	64
27	Modelling the Nanomechanical Responses of Biofilms Grown on the Indenter Probe. Processes, 2018, 6, 84.	2.8	6
28	Effects of elemene on inhibiting proliferation of vascular smooth muscle cells and promoting reendothelialization at the stent implantation site. Biomaterials Science, 2017, 5, 1144-1155.	5.4	14
29	Rheological Characterization of Alginate Based Hydrogels for Tissue Engineering. MRS Advances, 2017, 2, 1309-1314.	0.9	22
30	3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development. Acta Biomaterialia, 2017, 49, 329-343.	8.3	122
31	Penetration of blood–brain barrier and antitumor activity and nerve repair in glioma by doxorubicin-loaded monosialoganglioside micelles system. International Journal of Nanomedicine, 2017, Volume 12, 4879-4889.	6.7	37
32	Extracellular Polymeric Substance Production and Aggregated Bacteria Colonization Influence the Competition of Microbes in Biofilms. Frontiers in Microbiology, 2017, 8, 1865.	3.5	63
33	A mechanistic Individual-based Model of microbial communities. PLoS ONE, 2017, 12, e0181965.	2.5	69
34	Thin film coatings and the biological interface. , 2016, , 143-164.		6
35	Modelling the nanomechanical response of a micro particle–matrix system for nanoindentation tests. Nanotechnology, 2016, 27, 195703.	2.6	6
36	Nanomechanical and microstructure analysis of extracellular matrix layer of immortalized cell line Y201 from human mesenchymal stem cells. Surface and Coatings Technology, 2015, 284, 417-421.	4.8	9

#	Article	IF	Citations
37	Modeling the nanomechanical responses of biopolymer composites during the nanoindentation. Thin Solid Films, 2015, 596, 277-281.	1.8	14
38	FINITE ELEMENT ANALYSIS OF MECHANICAL DEFORMATION OF CHONDROCYTE TO 2D SUBSTRATE AND 3D SCAFFOLD. Journal of Mechanics in Medicine and Biology, 2015, 15, 1550077.	0.7	1
39	Influence of surface roughness on the initial formation of biofilm. Surface and Coatings Technology, 2015, 284, 410-416.	4.8	92
40	Nanoindentation for Fracture Toughness of Coatings. Advances in Materials Science and Engineering, 2015, , 123-178.	0.4	25
41	On the Applicability of Sneddon's Solution for Interpreting the Indentation of Nonlinear Elastic Biopolymers. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	2.2	24
42	Nanoscale viscoelastic properties and adhesion of polydimethylsiloxane for tissue engineering. Acta Mechanica Sinica/Lixue Xuebao, 2014, 30, 2-6.	3.4	22
43	Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films. Journal of Composite Materials, 2014, 48, 3705-3717.	2.4	107
44	Nanobiomechanics of living cells: a review. Interface Focus, 2014, 4, 20130055.	3.0	88
45	An easy and eco-friendly method to prepare reduced graphene oxide with Fe(OH)2 for use as a conductive additive for LiFePO4 cathode materials. RSC Advances, 2013, 3, 4408.	3.6	34
46	Finite Element Modelling of Delamination in Multilayer Coatings. Nanoscience and Nanotechnology Letters, 2013, 5, 795-800.	0.4	3
47	Understanding the nanoindentation mechanisms of a microsphere for biomedical applications. Journal Physics D: Applied Physics, 2013, 46, 495303.	2.8	9
48	Finite element modelling of nanoindentation based methods for mechanical properties of cells. Journal of Biomechanics, 2012, 45, 2810-2816.	2.1	38
49	Cell Mechanics, Structure, and Function Are Regulated by the Stiffness of the Three-Dimensional Microenvironment. Biophysical Journal, 2012, 103, 1188-1197.	0.5	76
50	Indentation-based methods to assess fracture toughness for thin coatings. Journal Physics D: Applied Physics, 2012, 45, 203001.	2.8	92
51	On the determination of coating toughness during nanoindentation. Surface and Coatings Technology, 2012, 206, 3064-3068.	4.8	37
52	Approaches to investigate delamination and interfacial toughness in coated systems: an overview. Journal Physics D: Applied Physics, 2011, 44, 034001.	2.8	102
53	Structure and optical properties of AlxZn1â^3xO alloys by sol–gel technique. Materials Research Bulletin, 2011, 46, 755-759.	5.2	8
54	Realization of nonpolar a-plane ZnO films on r-plane sapphire substrates using a simple single-source chemical vapor deposition. Materials Letters, 2011, 65, 716-718.	2.6	10

#	Article	IF	Citations
55	Effect of substrate microstructure on the misorientation of a-plane ZnO film investigated using x-ray diffraction. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	2.1	5
56	Finite Element Modeling of Cell Deformation When Chondrocyte Seeded Agarose Is Subjected to Compression. IFMBE Proceedings, 2011, , 17-20.	0.3	5
57	Nanomechanical characterization of tissue engineered bone grown on titanium alloy inÂvitro. Journal of Materials Science: Materials in Medicine, 2010, 21, 277-282.	3.6	30
58	Structural and optical properties of Al <inf>x</inf> Zn <inf>1−x</inf> O alloys by sol-gel technique., 2010,,.		0
59	Controllable growth of zinc oxide single-crystal hexagonal microtubes by hydrothermal synthesis. , 2010, , .		0
60	Modeling of Indentation Damage in Single and Multilayer Coatings. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2009, , 161-170.	0.2	2
61	Modelling the limits of coating toughness in brittle coated systems. Thin Solid Films, 2009, 517, 2945-2952.	1.8	39
62	Hydrothermal synthesis and optical properties of ZnO single-crystal hexagonal microtubes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 163, 157-160.	3.5	6
63	Nanoindentation and nanowear study of Sn and Ni–Sn coatings. Tribology International, 2009, 42, 779-791.	5.9	26
64	Finite element analysis of contact induced adhesion failure in multilayer coatings with weak interfaces. Thin Solid Films, 2009, 517, 3704-3711.	1.8	46
65	The investigation of creep of electroplated Sn and Ni–Sn coating on copper at room temperature by nanoindentation. Surface and Coatings Technology, 2009, 203, 1609-1617.	4.8	37
66	On the factors affecting the critical indenter penetration for measurement of coating hardness. Vacuum, 2009, 83, 911-920.	3.5	108
67	Relation between the ratio of elastic work to the total work of indentation and the ratio of hardness to Young's modulus for a perfect conical tip. Journal of Materials Research, 2009, 24, 590-598.	2.6	44
68	Experimental and modelling techniques for assessing the adhesion of very thin coatings on glass. Journal Physics D: Applied Physics, 2009, 42, 214003.	2.8	22
69	High quality p-type ZnO film growth by a simple method and its properties. Science Bulletin, 2008, 53, 2582-2585.	9.0	4
70	Ultraviolet emission properties of ZnO film with zinc deficiency by SS CVD. Applied Surface Science, 2008, 254, 1599-1603.	6.1	13
71	Mechanical analysis and <i>in situ</i> structural and morphological evaluation of Ni–Sn alloy anodes for Li ion batteries. Journal Physics D: Applied Physics, 2008, 41, 025302.	2.8	19
72	Multi-cycling nanoindentation study on thin optical coatings on glass. Journal Physics D: Applied Physics, 2008, 41, 074009.	2.8	20

#	Article	IF	CITATIONS
73	A modified model to determine limiting values of coating toughness by nanoindentation. Tribology - Materials, Surfaces and Interfaces, 2008, 2, 219-224.	1.4	4
74	Investigation of the relationship between work done during indentation and the hardness and Young's modulus obtained by indentation testing. International Journal of Materials Research, 2008, 99, 852-857.	0.3	6
75	Indentation fracture and toughness assessment for thin optical coatings on glass. Journal Physics D: Applied Physics, 2007, 40, 5401-5417.	2.8	109
76	Loading rate effects on the fracture behaviour of solar control coatings during nanoindentation. Thin Solid Films, 2007, 516, 128-135.	1.8	12
77	A critical examination of the relationship between plastic deformation zone size and Young's modulus to hardness ratio in indentation testing. Journal of Materials Research, 2006, 21, 2617-2627.	2.6	50
78	The effect of anodizing voltage on the electrical properties of Al–Ti composite oxide film on aluminum. Journal of Electroanalytical Chemistry, 2006, 590, 26-31.	3.8	17
79	On the relationship between plastic zone radius and maximum depth during nanoindentation. Surface and Coatings Technology, 2006, 201, 4289-4293.	4.8	73
80	Assessment of the toughness of thin coatings using nanoindentation under displacement control. Thin Solid Films, 2006, 494, 1-7.	1.8	112
81	Al2O3-TiO2 composite oxide films on etched aluminum foil by hydrolysis precipitation and anodizing. Journal of Materials Science, 2006, 41, 569-571.	3.7	16
82	Assessment of the Adhesion of Ceramic Coatings. Advances in Science and Technology, 2006, 45, 1299-1308.	0.2	7
83	Title is missing!. Journal of Materials Science Letters, 2003, 22, 383-385.	0.5	0