
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7081546/publications.pdf Version: 2024-02-01

IFFEDEV 1 7INK

#	Article	IF	CITATIONS
1	Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. ACS Nano, 2008, 2, 2121-2134.	14.6	2,145
2	Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano, 2008, 2, 889-896.	14.6	1,758
3	Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 2012, 41, 2590.	38.1	1,667
4	Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature, 1997, 389, 364-368.	27.8	1,417
5	Biocompatibility, Biodistribution, and Drugâ€Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals. Small, 2010, 6, 1794-1805.	10.0	947
6	Mesoporous Silica Nanoparticles as a Delivery System for Hydrophobic Anticancer Drugs. Small, 2007, 3, 1341-1346.	10.0	927
7	Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs. ACS Nano, 2009, 3, 3273-3286.	14.6	817
8	Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and P-Glycoprotein siRNA to Overcome Drug Resistance in a Cancer Cell Line. ACS Nano, 2010, 4, 4539-4550.	14.6	817
9	Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Accounts of Chemical Research, 2013, 46, 792-801.	15.6	801
10	Use of Metal Oxide Nanoparticle Band Gap To Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation. ACS Nano, 2012, 6, 4349-4368.	14.6	718
11	Mechanized Silica Nanoparticles: A New Frontier in Theranostic Nanomedicine. Accounts of Chemical Research, 2011, 44, 903-913.	15.6	584
12	Noninvasive Remote-Controlled Release of Drug Molecules in Vitro Using Magnetic Actuation of Mechanized Nanoparticles. Journal of the American Chemical Society, 2010, 132, 10623-10625.	13.7	583
13	Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 2008, 130, 2382-2383.	13.7	567
14	Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. Journal of the American Chemical Society, 2010, 132, 12690-12697.	13.7	550
15	Codelivery of an Optimal Drug/siRNA Combination Using Mesoporous Silica Nanoparticles To Overcome Drug Resistance in Breast Cancer <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2013, 7, 994-1005.	14.6	525
16	Light-Operated Mechanized Nanoparticles. Journal of the American Chemical Society, 2009, 131, 1686-1688.	13.7	482
17	Mechanised nanoparticles for drug delivery. Nanoscale, 2009, 1, 16.	5.6	481
18	Use of Size and a Copolymer Design Feature To Improve the Biodistribution and the Enhanced Permeability and Retention Effect of Doxorubicin-Loaded Mesoporous Silica Nanoparticles in a Murine Xenograft Tumor Model. ACS Nano, 2011, 5, 4131-4144.	14.6	446

#	Article	IF	CITATIONS
19	An Operational Supramolecular Nanovalve. Journal of the American Chemical Society, 2004, 126, 3370-3371.	13.7	438
20	Lightâ€Activated Nanoimpellerâ€Controlled Drug Release in Cancer Cells. Small, 2008, 4, 421-426.	10.0	430
21	Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic. Journal of the American Chemical Society, 2012, 134, 15790-15804.	13.7	372
22	Aspect Ratio Determines the Quantity of Mesoporous Silica Nanoparticle Uptake by a Small GTPase-Dependent Macropinocytosis Mechanism. ACS Nano, 2011, 5, 4434-4447.	14.6	330
23	pH Clock-Operated Mechanized Nanoparticles. Journal of the American Chemical Society, 2009, 131, 12912-12914.	13.7	323
24	Designed Synthesis of CeO ₂ Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials. ACS Nano, 2012, 6, 5366-5380.	14.6	323
25	Dual-Controlled Nanoparticles Exhibiting AND Logic. Journal of the American Chemical Society, 2009, 131, 11344-11346.	13.7	302
26	Controlled-Access Hollow Mechanized Silica Nanocontainers. Journal of the American Chemical Society, 2009, 131, 15136-15142.	13.7	272
27	Synthesis and electrochromic properties of mesoporous tungsten oxide. Journal of Materials Chemistry, 2001, 11, 92-97.	6.7	245
28	Antimicrobial Activity of Silver Nanocrystals Encapsulated in Mesoporous Silica Nanoparticles. Advanced Materials, 2009, 21, 1684-1689.	21.0	242
29	Construction of a pH-Driven Supramolecular Nanovalve. Organic Letters, 2006, 8, 3363-3366.	4.6	240
30	Photophysical pore control in an azobenzene-containing metal–organic framework. Chemical Science, 2013, 4, 2858.	7.4	239
31	Tailored Synthesis of Octopusâ€ŧype Janus Nanoparticles for Synergistic Activelyâ€Targeted and Chemoâ€Photothermal Therapy. Angewandte Chemie - International Edition, 2016, 55, 2118-2121.	13.8	236
32	Creating Lithiumâ€ion Electrolytes with Biomimetic Ionic Channels in Metal–Organic Frameworks. Advanced Materials, 2018, 30, e1707476.	21.0	230
33	Nanomachines and Other Caps on Mesoporous Silica Nanoparticles for Drug Delivery. Accounts of Chemical Research, 2019, 52, 1531-1542.	15.6	230
34	Photo-Driven Expulsion of Molecules from Mesostructured Silica Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 6589-6592.	3.1	219
35	Targeted Intracellular Delivery of Antituberculosis Drugs to Mycobacterium tuberculosis-Infected Macrophages via Functionalized Mesoporous Silica Nanoparticles. Antimicrobial Agents and Chemotherapy, 2012, 56, 2535-2545.	3.2	219
36	Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications. Nature Reviews Materials, 2020, 5, 886-909.	48.7	212

#	Article	IF	CITATIONS
37	Nanovalve-Controlled Cargo Release Activated by Plasmonic Heating. Journal of the American Chemical Society, 2012, 134, 7628-7631.	13.7	211
38	Synthesis of Biomoleculeâ€Modified Mesoporous Silica Nanoparticles for Targeted Hydrophobic Drug Delivery to Cancer Cells. Small, 2011, 7, 1816-1826.	10.0	204
39	Mesostructured multifunctional nanoparticles for imaging and drug delivery. Journal of Materials Chemistry, 2009, 19, 6251.	6.7	202
40	Supramolecular Nanovalves Controlled by Proton Abstraction and Competitive Binding. Chemistry of Materials, 2006, 18, 5919-5928.	6.7	194
41	In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 212-220.	3.3	192
42	Two-Wave Nanotherapy To Target the Stroma and Optimize Gemcitabine Delivery To a Human Pancreatic Cancer Model in Mice. ACS Nano, 2013, 7, 10048-10065.	14.6	163
43	Stimulated Release of Size elected Cargos in Succession from Mesoporous Silica Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 5460-5465.	13.8	157
44	Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. Journal of Controlled Release, 2016, 229, 183-191.	9.9	149
45	Taking the Temperature of the Interiors of Magnetically Heated Nanoparticles. ACS Nano, 2014, 8, 5199-5207.	14.6	148
46	pH-Operated Mechanized Porous Silicon Nanoparticles. Journal of the American Chemical Society, 2011, 133, 8798-8801.	13.7	146
47	Controlled Placement of Luminescent Molecules and Polymers in Mesostructured Solâ^'Gel Thin Films. Journal of the American Chemical Society, 2001, 123, 1248-1249.	13.7	144
48	Patterned Hexagonal Arrays of Living Cells in Solâ^'Gel Silica Films. Journal of the American Chemical Society, 2000, 122, 6488-6489.	13.7	136
49	Activation of Snap-Top Capped Mesoporous Silica Nanocontainers Using Two Near-Infrared Photons. Journal of the American Chemical Society, 2013, 135, 14000-14003.	13.7	132
50	Structure and Assignment of the Luminescence of a New Mixed-Ligand Copper(I) Polymer. Inorganic Chemistry, 1997, 36, 796-801.	4.0	130
51	Shortwave Infrared Imaging with J-Aggregates Stabilized in Hollow Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 2019, 141, 12475-12480.	13.7	128
52	Supramolecular Assemblies of Heterogeneous Mesoporous Silica Nanoparticles to Co-deliver Antimicrobial Peptides and Antibiotics for Synergistic Eradication of Pathogenic Biofilms. ACS Nano, 2020, 14, 5926-5937.	14.6	126
53	A reversible light-operated nanovalve on mesoporous silica nanoparticles. Nanoscale, 2014, 6, 3335.	5.6	122
54	Working Supramolecular Machines Trapped in Glass and Mounted on a Film Surface. Angewandte Chemie - International Edition. 2001. 40. 2447-2451.	13.8	112

#	Article	IF	CITATIONS
55	Mesoporous Silica Nanoparticles with pH-Sensitive Nanovalves for Delivery of Moxifloxacin Provide Improved Treatment of Lethal Pneumonic Tularemia. ACS Nano, 2015, 9, 10778-10789.	14.6	109
56	Snap-Top Nanocarriers. Organic Letters, 2010, 12, 3304-3307.	4.6	108
57	A Photoactive Molecular Triad as a Nanoscale Power Supply for a Supramolecular Machine. Chemistry - A European Journal, 2005, 11, 6846-6858.	3.3	106
58	Twoâ€Photonâ€Triggered Drug Delivery via Fluorescent Nanovalves. Small, 2014, 10, 1752-1755.	10.0	106
59	Mesostructured Silica for Optical Functionality, Nanomachines, and Drug Delivery. Journal of the American Ceramic Society, 2009, 92, s2-s10.	3.8	101
60	In Situ Fluorescence Probing of the Chemical Changes during Sol-Gel Thin Film Formation. Journal of the American Ceramic Society, 1995, 78, 1640-1648.	3.8	99
61	Twoâ€Photonâ€Triggered Drug Delivery in Cancer Cells Using Nanoimpellers. Angewandte Chemie - International Edition, 2013, 52, 13813-13817.	13.8	94
62	In Situ Luminescence Probing of the Chemical and Structural Changes during Formation of Dip-Coated Lamellar Phase Sodium Dodecyl Sulfate Solâ^'Gel Thin Films. Journal of the American Chemical Society, 2000, 122, 3739-3745.	13.7	93
63	Redox―and pH ontrolled Mechanized Nanoparticles. European Journal of Organic Chemistry, 2009, 2009, 1669-1673.	2.4	91
64	Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. Nature Communications, 2014, 5, 3200.	12.8	90
65	A molecular cross-linking approach for hybrid metal oxides. Nature Materials, 2018, 17, 341-348.	27.5	90
66	Measurement of Dissolved Oxygen in Water Using Glass-Encapsulated Myoglobin. Analytical Chemistry, 1995, 67, 1505-1509.	6.5	88
67	Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation. ACS Nano, 2019, 13, 1292-1308.	14.6	88
68	Supramolecular Nanomachines as Stimuli-Responsive Gatekeepers on Mesoporous Silica Nanoparticles for Antibiotic and Cancer Drug Delivery. Theranostics, 2019, 9, 3341-3364.	10.0	86
69	Mechanical characteristics and mechanism of the triboluminescence of fluorescent molecular crystals. Journal of Chemical Physics, 1980, 73, 5933-5941.	3.0	83
70	Synthesis of Protein-Doped Sol-Gel SiO2 Thin Films: Evidence for Rotational Mobility of Encapsulated Cytochrome c. Chemistry of Materials, 1995, 7, 1431-1434.	6.7	82
71	In Situ Probing by Fluorescence Spectroscopy of the Formation of Continuous Highly-Ordered Lamellar-Phase Mesostructured Thin Films. Langmuir, 1998, 14, 7331-7333.	3.5	82
72	Biodegradable Oxamideâ€Phenyleneâ€Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells. Chemistry - A European Journal, 2016, 22, 14806-14811.	3.3	81

#	Article	IF	CITATIONS
73	Nano-QSAR modeling for predicting the cytotoxicity of metal oxide nanoparticles using novel descriptors. RSC Advances, 2016, 6, 25766-25775.	3.6	81
74	Redoxâ€Triggered Release of Moxifloxacin from Mesoporous Silica Nanoparticles Functionalized with Disulfide Snapâ€Tops Enhances Efficacy Against Pneumonic Tularemia in Mice. Small, 2016, 12, 3690-3702.	10.0	80
75	Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1381-1394.	3.3	75
76	A Responsive Mesoporous Silica Nanoparticle Platform for Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound-Stimulated Cargo Delivery with Controllable Location, Time, and Dose. Journal of the American Chemical Society, 2019, 141, 17670-17684.	13.7	71
77	pHâ€Responsive Isoniazid‣oaded Nanoparticles Markedly Improve Tuberculosis Treatment in Mice. Small, 2015, 11, 5066-5078.	10.0	68
78	Laser and Thermal Vapor Deposition of Metal Sulfide (NiS, PdS) Films and in Situ Gas-Phase Luminescence of Photofragments from M(S2COCHMe2)2. Chemistry of Materials, 1997, 9, 1208-1212.	6.7	67
79	pH-Responsive Dual Cargo Delivery from Mesoporous Silica Nanoparticles with a Metal-Latched Nanogate. Inorganic Chemistry, 2013, 52, 2044-2049.	4.0	67
80	Nanoparticle delivery of siRNA against TWIST to reduce drug resistance and tumor growth in ovarian cancer models. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 965-976.	3.3	67
81	Functional Nanovalves on Protein-Coated Nanoparticles for In vitro and In vivo Controlled Drug Delivery. Small, 2015, 11, 319-328.	10.0	65
82	Externally Controlled Nanomachines on Mesoporous Silica Nanoparticles for Biomedical Applications. ChemPhysChem, 2016, 17, 1769-1779.	2.1	64
83	Photonic Materials by the Sol-Gel Process. Journal of the Ceramic Society of Japan, 1991, 99, 878-893.	1.3	61
84	Comparison of the effects of commercial coated and uncoated ZnO nanomaterials and Zn compounds in kidney bean (Phaseolus vulgaris) plants. Journal of Hazardous Materials, 2017, 332, 214-222.	12.4	57
85	A Pathogen-Specific Cargo Delivery Platform Based on Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 2017, 139, 6663-6668.	13.7	57
86	In Situ Fluorescence Probing of Molecular Mobility and Chemical Changes during Formation of Dip-Coated Solâ^'Gel Silica Thin Films. Chemistry of Materials, 2000, 12, 231-235.	6.7	55
87	Synthesis, Structure, Luminescence, and Raman-Determined Excited State Distortions of a Trinuclear Gold(I) Phosphine Thiolate Complex. Inorganic Chemistry, 1996, 35, 5813-5819.	4.0	54
88	Measurement of Uptake and Release Capacities of Mesoporous Silica Nanoparticles Enabled by Nanovalve Gates. Journal of Physical Chemistry C, 2011, 115, 19496-19506.	3.1	54
89	Magnetism, Ultrasound, and Light-Stimulated Mesoporous Silica Nanocarriers for Theranostics and Beyond. Journal of the American Chemical Society, 2021, 143, 6025-6036.	13.7	52
90	Mesoporous silica nanoparticle delivery of chemically modified siRNA against TWIST1 leads to reduced tumor burden. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1657-1666.	3.3	51

#	Article	IF	CITATIONS
91	Facile Strategy Enabling Both High Loading and High Release Amounts of the Water-Insoluble Drug Clofazimine Using Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 31870-31881.	8.0	51
92	Interference dips in molecular absorption spectra calculated for coupled electronic state potential surfaces. Journal of Chemical Physics, 1992, 96, 2681-2690.	3.0	50
93	Disulfide-gated mesoporous silica nanoparticles designed for two-photon-triggered drug release and imaging. Journal of Materials Chemistry B, 2015, 3, 6456-6461.	5.8	49
94	Periodic Mesoporous Organosilica Nanoparticles with Controlled Morphologies and High Drug/Dye Loadings for Multicargo Delivery in Cancer Cells. Chemistry - A European Journal, 2016, 22, 9607-9615.	3.3	46
95	Photo-redox activated drug delivery systems operating under two photon excitation in the near-IR. Nanoscale, 2014, 6, 4652-4658.	5.6	43
96	Light or Heat? The Origin of Cargo Release from Nanoimpeller Particles Containing Upconversion Nanocrystals under IR Irradiation. Small, 2015, 11, 4165-4172.	10.0	43
97	Light-activated functional mesostructured silica. Journal of Sol-Gel Science and Technology, 2008, 46, 313-322.	2.4	42
98	Unusual Intensities in the Resonance Raman Spectra and Excitation Profiles of an Intervalence Metal-to-Metal Charge Transfer Complex. Journal of the American Chemical Society, 1997, 119, 1895-1900.	13.7	41
99	Alternate State Variables for Emerging Nanoelectronic Devices. IEEE Nanotechnology Magazine, 2009, 8, 66-75.	2.0	40
100	An Enzymatic Chemical Amplifier Based on Mechanized Nanoparticles. Journal of the American Chemical Society, 2013, 135, 17659-17662.	13.7	37
101	Ligand to Ligand Charge Transfer in (Hydrotris(pyrazolyl)borato)(triphenylarsine)copper(I). Inorganic Chemistry, 2000, 39, 427-432.	4.0	36
102	Twoâ€Photonâ€Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment. Advanced Healthcare Materials, 2018, 7, e1701248.	7.6	36
103	Probing the Local Nanoscale Heating Mechanism of a Magnetic Core in Mesoporous Silica Drug-Delivery Nanoparticles Using Fluorescence Depolarization. Journal of the American Chemical Society, 2020, 142, 5212-5220.	13.7	35
104	Unusual Features in Absorption Spectra Arising from Coupled Potential Surfaces. Comments on Inorganic Chemistry, 1992, 13, 177-220.	5.2	32
105	Porous Sol-Gel Silicates Containing Gold Particles as Matrices for Surface-EnhancedRaman Spectroscopy. Journal of Raman Spectroscopy, 1996, 27, 775-783.	2.5	31
106	Laserâ€driven chemical vapor deposition of platinum at atmospheric pressure and room temperature fromCpPt(CH3)3. Applied Physics Letters, 1988, 53, 1705-1707.	3.3	30
107	Aerosol droplet delivery of mesoporous silica nanoparticles: A strategy for respiratory-based therapeutics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1377-1385.	3.3	30
108	Magnetically Stimulated Drug Release Using Nanoparticles Capped by Self-Assembling Peptides. ACS Applied Materials & Interfaces, 2019, 11, 43835-43842.	8.0	29

#	Article	IF	CITATIONS
109	Use of Ferritin Capped Mesoporous Silica Nanoparticles for Redox and pH Triggered Drug Release In Vitro and In Vivo. Advanced Functional Materials, 2020, 30, 2002043.	14.9	29
110	Biomolecular materials based on sol-gel encapsulated proteins. Journal of Sol-Gel Science and Technology, 1994, 2, 791-795.	2.4	27
111	Molecular Motion and Environmental Rigidity in the Framework and Ionic Interface Regions of Mesostructured Silica Thin Films. Journal of Physical Chemistry B, 2001, 105, 10335-10339.	2.6	27
112	Magnetic Heating Stimulated Cargo Release with Dose Control using Multifunctional MR and Thermosensitive Liposome. Nanotheranostics, 2019, 3, 166-178.	5.2	26
113	Improving pore exposure in mesoporous silica films for mechanized control of the pores. Microporous and Mesoporous Materials, 2010, 132, 435-441.	4.4	25
114	Continuous spectroscopic measurements of photo-stimulated release of molecules by nanomachines in a single living cell. Nanoscale, 2012, 4, 3482.	5.6	24
115	Bisâ€clickable Mesoporous Silica Nanoparticles: Straightforward Preparation of Lightâ€Actuated Nanomachines for Controlled Drug Delivery with Active Targeting. Chemistry - A European Journal, 2016, 22, 9624-9630.	3.3	24
116	Probing the Microenvironment in the Confined Pores of Mesoporous Silica Nanoparticles. Journal of Physical Chemistry Letters, 2014, 5, 839-842.	4.6	23
117	Synthesis and Luminescence Spectroscopy of a Series of [η5-CpFe(CO)2] Complexes Containing 1,12-Dicarba-closo-dodecaboranyl and -ylene Ligands. Inorganic Chemistry, 2001, 40, 5428-5433.	4.0	22
118	Enzymatic activity of oxalate oxidase and kinetic measurements by optical methods in transparent sol-gel monoliths. Journal of Sol-Gel Science and Technology, 1996, 7, 117-121.	2.4	21
119	Tailored Synthesis of Octopusâ€ŧype Janus Nanoparticles for Synergistic Activelyâ€ 1 argeted and Chemoâ€₽hotothermal Therapy. Angewandte Chemie, 2016, 128, 2158-2161.	2.0	21
120	Encapsulation of the ferritin protein in sol-gel derived silica glasses. Journal of Sol-Gel Science and Technology, 1996, 7, 109-116.	2.4	20
121	Luminescent Photofragments of (1,1,1,5,5,5-Hexafluoro-2,4-pentanedionato) Metal Complexes in the Gas Phase. Inorganic Chemistry, 1998, 37, 2880-2887.	4.0	20
122	Laserâ€assisted organometallic chemical vapor deposition of films of rhodium and iridium. Applied Physics Letters, 1992, 60, 1402-1403.	3.3	19
123	Nanoconfined Proteins and Enzymes: Sol—Gel-Based Biomolecular Materials. ACS Symposium Series, 1996, , 351-365.	0.5	18
124	Interference Effects of Multiple Excited States in the Resonance Raman Spectroscopy of CpCoCODâ€. Journal of Physical Chemistry B, 2000, 104, 10743-10749.	2.6	17
125	Wavelength Dependence of Photooxidation vs Photofragmentation of Chromocene. Journal of Physical Chemistry A, 2001, 105, 8665-8671.	2.5	16
126	Magnetic resonance imaging of high-intensity focused ultrasound-stimulated drug release from a self-reporting core@shell nanoparticle platform. Chemical Communications, 2020, 56, 10297-10300.	4.1	16

#	Article	IF	CITATIONS
127	Surface Immobilized Heteroleptic Copper Compounds as State Variables that Show Negative Differential Resistance. Journal of Physical Chemistry Letters, 2010, 1, 589-593.	4.6	15
128	Stimuli-Responsive Nanomachines and Caps for Drug Delivery. The Enzymes, 2018, 43, 31-65.	1.7	15
129	The Epithelial–Mesenchymal Transcription Factor SNAI1 Represses Transcription of the Tumor Suppressor miRNA let-7 in Cancer. Cancers, 2021, 13, 1469.	3.7	15
130	Engineering the Internal Structure of Magnetic Silica Nanoparticles by Thermal Control. Particle and Particle Systems Characterization, 2015, 32, 307-312.	2.3	14
131	Drug Release from Threeâ€Dimensional Cubic Mesoporous Silica Nanoparticles Controlled by Nanoimpellers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 588-594.	1.2	13
132	Analyte-responsive gated hollow mesoporous silica nanoparticles exhibiting inverse functionality and an AND logic response. Nanoscale, 2016, 8, 18296-18300.	5.6	13
133	Allosteric Regulation of Enzymatic Reactions in a Transparent Inorganic Sol-Gel Material. Journal of Sol-Gel Science and Technology, 1999, 15, 57-62.	2.4	12
134	In vitro delivery of calcium ions by nanogated mesoporous silica nanoparticles to induce cancer cellular apoptosis. Molecular Systems Design and Engineering, 2017, 2, 384-392.	3.4	12
135	Activity and electrochemical properties: iron complexes of the anticancer drug triapine and its analogs. Journal of Biological Inorganic Chemistry, 2019, 24, 621-632.	2.6	12
136	Nanoparticle Formulation of Moxifloxacin and Intramuscular Route of Delivery Improve Antibiotic Pharmacokinetics and Treatment of Pneumonic Tularemia in a Mouse Model. ACS Infectious Diseases, 2019, 5, 281-291.	3.8	12
137	Excited-State Raman Spectroscopy of Inorganic Compounds. Photochemistry and Photobiology, 1997, 65, 65-72.	2.5	11
138	InÂsitu fluorescence probing of the chemical and structural changes during formation of hexagonal phase cetyltrimethylammonium bromide and lamellar phase CTAB/Poly(dodecylmethacrylate) sol–gel silica thin films. Journal of Sol-Gel Science and Technology, 2008, 47, 300-310.	2.4	10
139	Hard Pd Nanorods in the Soft Surfactant Mixture of CTAB and Pluronics: Seedless Synthesis and Their Self-Assembly. Langmuir, 2018, 34, 4271-4281.	3.5	10
140	Luminescence of Dimethylgallium(III) Azide. Inorganic Chemistry, 2001, 40, 3252-3254.	4.0	9
141	Ag(i)-mediated self-assembly of anisotropic rods and plates in the surfactant mixture of CTAB and Pluronics. RSC Advances, 2019, 9, 4380-4389.	3.6	9
142	Inorganic Sol—Gel Glasses as Matrices for Nonlinear Optical Materials. ACS Symposium Series, 1991, , 541-552.	0.5	8
143	Effect of Pore Wall Charge and Probe Molecule Size on Molecular Motion inside Mesoporous Silica Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 23780-23787.	3.1	7
144	Self-Contained Nanocapsules Carrying Anticancer Peptides for Magnetically Activated and Enzyme-Cleaved Drug Delivery. ACS Applied Nano Materials, 0, , .	5.0	7

#	Article	IF	CITATIONS
145	EELS Study of Differential Diffusion of Fe and Co in Magnetized Silica Nanocomposites. Journal of Physical Chemistry C, 2016, 120, 25578-25587.	3.1	6
146	Isoquinoline thiosemicarbazone displays potent anticancer activity with in vivo efficacy against aggressive leukemias. RSC Medicinal Chemistry, 2020, 11, 392-410.	3.9	6
147	Encapsulation and reactivity of the enzyme oxalate oxidase in a sol-gel derived glass. Journal of Sol-Gel Science and Technology, 1994, 2, 827-829.	2.4	5
148	Mixed valence of a delocalized system: a resonance Raman study of the tetracyanoquinodimethane radical anion. Journal of Physical Organic Chemistry, 2009, 22, 522-526.	1.9	5
149	Room temperature negative differential resistance of a monolayer molecular rotor device. Applied Physics Letters, 2009, 95, 093503.	3.3	5
150	Tuberculosis: pH-Responsive Isoniazid-Loaded Nanoparticles Markedly Improve Tuberculosis Treatment in Mice (Small 38/2015). Small, 2015, 11, 5065-5065.	10.0	5
151	A nanoparticle enabled focused ultrasound-stimulated magnetic resonance imaging spotlight. Chemical Communications, 2019, 55, 10261-10264.	4.1	5
152	Expanding nanoparticle multifunctionality: size-selected cargo release and multiple logic operations. Nanoscale, 2021, 13, 5497-5506.	5.6	5
153	Excited State Distortions Determined by Electronic and Raman Spectroscopy. ACS Symposium Series, 1986, , 39-56.	0.5	4
154	Simultaneous spectroscopic measurements of the interior temperature and induced cargo release from pore-restricted mesoporous silica nanoparticles. Nanoscale, 2016, 8, 10558-10563.	5.6	4
155	Responsive Nanoparticles to Enable a Focused Ultrasound-Stimulated Magnetic Resonance Imaging Spotlight. ACS Nano, 2021, 15, 14618-14630.	14.6	4
156	Excited state mixed valence in a dualâ€bridged threeâ€chromophore system. Journal of Physical Organic Chemistry, 2012, 25, 578-585.	1.9	3
157	Luminescence of Alizarin and its Metal Complexes. Materials Research Society Symposia Proceedings, 1990, 185, 139.	0.1	2
158	Rigidochromism as a Probe of Gelation, Aging, and Drying in SOL-GEL Derived Ormosils. Materials Research Society Symposia Proceedings, 1992, 271, 651.	0.1	2
159	Structures of photo-produced transient species. Research on Chemical Intermediates, 2000, 26, 69-84.	2.7	2
160	Magnetic transitions and structural characteristics of Mn-doped α-Fe2O3/silica nanocomposites. AIP Advances, 2021, 11, 065313.	1.3	2
161	Laser Spectroscopy of Materials Used in Paintings. Materials Research Society Symposia Proceedings, 1990, 185, 133.	0.1	1
162	Engineering nanoparticles for sensing and biomedical applications: a themed collection. Molecular Systems Design and Engineering, 2017, 2, 347-348.	3.4	1

#	Article	IF	CITATIONS
163	Nanoscience and Nanotechnology at UCLA. ACS Nano, 2019, 13, 6127-6129.	14.6	1
164	Encapsulation and Reactivity of Proteins in Optically Transparent Porous Silicate Glasses Prepared by the Sol-Gel Method. Materials Research Society Symposia Proceedings, 1992, 277, 99.	0.1	0
165	Optical Sol-Gel Materials Based on Binding and Catalysis by Biomolecules. Materials Research Society Symposia Proceedings, 1994, 346, 1017.	0.1	0
166	Luminescence Properties of Rare-Earth Ions in Organic-Inorganic Hybrid Mesostructured Thin Films. Materials Research Society Symposia Proceedings, 2002, 726, 1.	0.1	0
167	Intracellular Delivery: Redox-Triggered Release of Moxifloxacin from Mesoporous Silica Nanoparticles Functionalized with Disulfide Snap-Tops Enhances Efficacy Against Pneumonic Tularemia in Mice (Small 27/2016). Small, 2016, 12, 3740-3740.	10.0	0
168	Frontispiece: Biodegradable Oxamideâ€Phenyleneâ€Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells. Chemistry - A European Journal, 2016, 22, .	3.3	0
169	Cancer Treatment: Twoâ€Photonâ€Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment (Adv. Healthcare Mater. 7/2018). Advanced Healthcare Materials, 2018, 7, 1870032.	7.6	0