
Masaki Miya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7081289/publications.pdf Version: 2024-02-01

Μλάλκι Μίνλ

#	Article	IF	CITATIONS
1	Environmental DNA Metabarcoding: A Novel Method for Biodiversity Monitoring of Marine Fish Communities. Annual Review of Marine Science, 2022, 14, 161-185.	11.6	52
2	Determining an effective sampling method for eDNA metabarcoding: a case study for fish biodiversity monitoring in a small, natural river. Limnology, 2021, 22, 221-235.	1.5	34
3	Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: Estimation of species richness and detection of habitat segregation. Environmental DNA, 2021, 3, 55-69.	5.8	65
4	An illustrated manual for environmental DNA research: Water sampling guidelines and experimental protocols. Environmental DNA, 2021, 3, 8-13.	5.8	102
5	Optimization of environmental DNA extraction and amplification methods for metabarcoding of deep-sea fish. MethodsX, 2021, 8, 101238.	1.6	21
6	Discovery of a colossal slickhead (Alepocephaliformes: Alepocephalidae): an active-swimming top predator in the deep waters of Suruga Bay, Japan. Scientific Reports, 2021, 11, 2490.	3.3	6
7	Phylogenomic resolution of the monotypic and enigmatic Amarsipus , the Bagless Glassfish (Teleostei,) Tj ETQq1	1 0,7843 1.7	14 ₅ gBT /Ove
8	Decadal vision in oceanography 2021: New methods and problems. Oceanography in Japan, 2021, 30, 227-253.	0.5	5
9	Evaluating intraspecific genetic diversity using environmental DNA and denoising approach: A case study using tank water. Environmental DNA, 2020, 2, 42-52.	5.8	47
10	MiFish metabarcoding: a high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples. Fisheries Science, 2020, 86, 939-970.	1.6	117
11	Environmental DNA metabarcoding reveals the presence of a small, quick-moving, nocturnal water shrew in a forest stream. Conservation Genetics, 2020, 21, 1079-1084.	1.5	16
12	Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs. Ecology and Evolution, 2020, 10, 5354-5367.	1.9	27
13	Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA. Environmental DNA, 2020, 2, 505-518.	5.8	77
14	Environmental DNA analysis shows high potential as a tool for estimating intraspecific genetic diversity in a wild fish population. Molecular Ecology Resources, 2020, 20, 1248-1258.	4.8	29
15	Ongoing localized extinctions of stream-dwelling white-spotted charr populations in small dammed-off habitats of Hokkaido Island, Japan. Hydrobiologia, 2019, 840, 207-213.	2.0	20
16	New PCR primers for metabarcoding environmental DNA from freshwater eels, genus Anguilla. Scientific Reports, 2019, 9, 7977.	3.3	18
17	Evaluation of detection probabilities at the water-filtering and initial PCR steps in environmental DNA metabarcoding using a multispecies site occupancy model. Scientific Reports, 2019, 9, 3581.	3.3	81
18	Multilocus phylogenetic analysis of the first molecular data from the rare and monotypic Amarsipidae places the family within the Pelagia and highlights limitations of existing data sets in resolving pelagian interrelationships. Molecular Phylogenetics and Evolution, 2018, 124, 172-180.	2.7	7

MASAKI MIYA

#	Article	IF	CITATIONS
19	Comparing local―and regionalâ€scale estimations of the diversity of stream fish using <scp>eDNA</scp> metabarcoding and conventional observation methods. Freshwater Biology, 2018, 63, 569-580.	2.4	88
20	MitoFish and MiFish Pipeline: A Mitochondrial Genome Database of Fish with an Analysis Pipeline for Environmental DNA Metabarcoding. Molecular Biology and Evolution, 2018, 35, 1553-1555.	8.9	169
21	Demonstration of the potential of environmental DNA as a tool for the detection of avian species. Scientific Reports, 2018, 8, 4493.	3.3	78
22	Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Scientific Reports, 2017, 7, 40368.	3.3	348
23	Tropical-forest mammals as detected by environmental DNA at natural saltlicks in Borneo. Biological Conservation, 2017, 210, 281-285.	4.1	54
24	Environmental <scp>DNA</scp> enables detection of terrestrial mammals from forest pond water. Molecular Ecology Resources, 2017, 17, e63-e75.	4.8	158
25	Preservation Obscures Pelagic Deep-Sea Fish Diversity: Doubling the Number of Sole-Bearing Opisthoproctids and Resurrection of the Genus Monacoa (Opisthoproctidae, Argentiniformes). PLoS ONE, 2016, 11, e0159762.	2.5	11
26	Use of a Filter Cartridge for Filtration of Water Samples and Extraction of Environmental DNA. Journal of Visualized Experiments, 2016, , .	0.3	60
27	Environmental DNA as a â€~Snapshot' of Fish Distribution: A Case Study of Japanese Jack Mackerel in Maizuru Bay, Sea of Japan. PLoS ONE, 2016, 11, e0149786.	2.5	192
28	The mitogenomic contributions to molecular phylogenetics and evolution of fishes: a 15-year retrospect. Ichthyological Research, 2015, 62, 29-71.	0.8	55
29	MitoFish and MitoAnnotator: A Mitochondrial Genome Database of Fish with an Accurate and Automatic Annotation Pipeline. Molecular Biology and Evolution, 2013, 30, 2531-2540.	8.9	651
30	Evolutionary Origin of the Scombridae (Tunas and Mackerels): Members of a Paleogene Adaptive Radiation with 14 Other Pelagic Fish Families. PLoS ONE, 2013, 8, e73535.	2.5	136
31	Deep-ocean origin of the freshwater eels. Biology Letters, 2010, 6, 363-366.	2.3	127
32	Mitogenomic evaluation of the unique facial nerve pattern as a phylogenetic marker within the percifom fishes (Teleostei: Percomorpha). Molecular Phylogenetics and Evolution, 2009, 53, 258-266.	2.7	55
33	Explosive Speciation of Takifugu: Another Use of Fugu as a Model System for Evolutionary Biology. Molecular Biology and Evolution, 2008, 26, 623-629.	8.9	89
34	Molecular phylogeny and evolution of the freshwater eels genus Anguilla based on the whole mitochondrial genome sequences. Molecular Phylogenetics and Evolution, 2005, 34, 134-146.	2.7	159
35	Bajacalifornia aequatoris, New Species of Alepocephalid Fish (Pisces: Salmoniformes) from the Central Equatorial Pacific. Copeia, 1993, 1993, 743.	1.3	4
36	Development of a new set of PCR primers for eDNA metabarcoding decapod crustaceans. Metabarcoding and Metagenomics, 0, 3, .	0.0	34

#	Article	IF	CITATIONS
37	Development and evaluation of PCR primers for environmental DNA (eDNA) metabarcoding of Amphibia. Metabarcoding and Metagenomics, 0, 6, .	0.0	8
38	The use of citizen science in fish eDNA metabarcoding for evaluating regional biodiversity in a coastal marine region: A pilot study. Metabarcoding and Metagenomics, 0, 6, .	0.0	15
39	Detection of the Largest Deep-Sea-Endemic Teleost Fish at Depths of Over 2,000 m Through a Combination of eDNA Metabarcoding and Baited Camera Observations. Frontiers in Marine Science, 0, 9, .	2.5	9