Sebastian D Pike

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7081061/publications.pdf

Version: 2024-02-01

361413 434195 1,107 32 20 31 citations h-index g-index papers 39 39 39 1497 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis and Characterization of a Rhodium(I) if -Alkane Complex in the Solid State. Science, 2012, 337, 1648-1651.	12.6	131
2	Organometallic chemistry using partially fluorinated benzenes. Chemical Communications, 2017, 53, 3615-3633.	4.1	88
3	Solid-State Synthesis and Characterization of f -Alkane Complexes, [Rh(L ₂)(f -Sup>2-C ₇ H ₁₂)][BAr ^F <csub> (L₂ = Bidentate Chelating Phosphine). Journal of the American Chemical Society, 2015, 137, 820-833.</csub>	4]	78
4	Dehydrogenative Boron Homocoupling of an Amineâ€Borane. Angewandte Chemie - International Edition, 2013, 52, 9776-9780.	13.8	66
5	The use of mixed-metal single source precursors for the synthesis of complex metal oxides. Chemical Communications, 2020, 56, 854-871.	4.1	60
6	The Simplest Aminoâ€borane H ₂ B=NH ₂ Trapped on a Rhodium Dimer: Pre atalysts for Amine–Borane Dehydropolymerization. Angewandte Chemie - International Edition, 2016, 55, 6651-6656.	13.8	57
7	Organometallic synthesis, reactivity and catalysis in the solid state using well-defined single-site species. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140187.	3.4	52
8	Rh–POP Pincer Xantphos Complexes for C–S and C–H Activation. Implications for Carbothiolation Catalysis. Organometallics, 2015, 34, 711-723.	2.3	51
9	Wellâ€Defined and Robust Rhodium Catalysts for the Hydroacylation of Terminal and Internal Alkenes. Angewandte Chemie - International Edition, 2015, 54, 8520-8524.	13.8	47
10	Singleâ€6ource Bismuth (Transition Metal) Polyoxovanadate Precursors for the Scalable Synthesis of Doped BiVO ₄ Photoanodes. Advanced Materials, 2018, 30, e1804033.	21.0	47
11	Enhancing the Antibacterial Activity of Light-Activated Surfaces Containing Crystal Violet and ZnO Nanoparticles: Investigation of Nanoparticle Size, Capping Ligand, and Dopants. ACS Omega, 2016, 1, 334-343.	3.5	41
12	Reversible Redox Cycling of Well-Defined, Ultrasmall Cu/Cu ₂ O Nanoparticles. ACS Nano, 2017, 11, 2714-2723.	14.6	41
13	Effect of the Phosphine Steric and Electronic Profile on the Rh-Promoted Dehydrocoupling of Phosphine–Boranes. Inorganic Chemistry, 2014, 53, 3716-3729.	4.0	38
14	Simple phosphinate ligands access zinc clusters identified in the synthesis of zinc oxide nanoparticles. Nature Communications, 2016, 7, 13008.	12.8	31
15	A CH2Cl2 complex of a [Rh(pincer)]+ cation. Dalton Transactions, 2015, 44, 6340-6342.	3.3	28
16	Relative binding affinities of fluorobenzene ligands in cationic rhodium bisphosphine Î-6â€"fluorobenzene complexes probed using collision-induced dissociation. Journal of Organometallic Chemistry, 2015, 784, 75-83.	1.8	27
17	Stoichiometric and Catalytic Solid–Gas Reactivity of Rhodium Bis-phosphine Complexes. Organometallics, 2015, 34, 1487-1497.	2.3	24
18	Layered zinc hydroxide monolayers by hydrolysis of organozincs. Chemical Science, 2018, 9, 2135-2146.	7.4	23

#	Article	IF	CITATIONS
19	Colloidal Cu/ZnO catalysts for the hydrogenation of carbon dioxide to methanol: investigating catalyst preparation and ligand effects. Catalysis Science and Technology, 2017, 7, 3842-3850.	4.1	22
20	Hydrolysis of organometallic and metal–amide precursors: synthesis routes to oxo-bridged heterometallic complexes, metal-oxo clusters and metal oxide nanoparticles. Dalton Transactions, 2018, 47, 3638-3662.	3.3	21
21	Antibacterial Surfaces with Activity against Antimicrobial Resistant Bacterial Pathogens and Endospores. ACS Infectious Diseases, 2020, 6, 939-946.	3.8	21
22	The Simplest Aminoâ€borane H ₂ B=NH ₂ Trapped on a Rhodium Dimer: Preâ€Catalysts for Amine–Borane Dehydropolymerization. Angewandte Chemie, 2016, 128, 6763-6768.	2.0	20
23	Photo-redox reactivity of titanium-oxo clusters: mechanistic insight into a two-electron intramolecular process, and structural characterisation of mixed-valent Ti(<scp>) Ti(<scp>iv< scp>) products. Chemical Science, 2019, 10, 6886-6898.</scp></scp>	7.4	16
24	C–Cl activation of the weakly coordinating anion [B(3,5-Cl2C6H3)4]â^' at a Rh(i) centre in solution and the solid-state. Dalton Transactions, 2013, 42, 12832.	3.3	15
25	Exploring (Ph2PCH2CH2)2E Ligand Space (E = O, S, PPh) in RhI Alkene Complexes as Potential Hydroacylation Catalysts. European Journal of Inorganic Chemistry, 2011, 2011, 5558-5565.	2.0	11
26	Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol. Journal of Materials Chemistry A, 2020, 8, 11282-11291.	10.3	10
27	A simple one-step synthetic route to access a range of metal-doped polyoxovanadate clusters. Dalton Transactions, 2019, 48, 4555-4564.	3.3	7
28	Exploring the Synthesis and Coordination Chemistry of Pentafluorophenylcopper: Organocopper Polyanions and Coordination Networks. Organometallics, 2020, 39, 3759-3767.	2.3	4
29	Titanium compounds containing naturally occurring dye molecules. Dalton Transactions, 2021, 50, 17202-17207.	3.3	2
30	Semi-Automated DigitalMicrograph Routine for Real-Time Phase Identification. Microscopy and Microanalysis, 2015, 21, 1667-1668.	0.4	0
31	Scalable Photoelectrochemical Perovskite-BiVO4 Tandem Devices for Solar Fuel Synthesis. , 0, , .		O
32	Scalable Photoelectrochemical Perovskite-BiVO4 Tandem Devices for Solar Fuel Synthesis., 0,,.		0