Martyn N. Futter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7080199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Are Agricultural Soils Dumps for Microplastics of Urban Origin?. Environmental Science & Technology, 2016, 50, 10777-10779.	10.0	1,014
2	Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future?. Science of the Total Environment, 2018, 645, 1029-1039.	8.0	881
3	A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environmental Sciences: Processes and Impacts, 2016, 18, 1050-1059.	3.5	455
4	Patterns and Dynamics of Dissolved Organic Carbon (DOC) in Boreal Streams: The Role of Processes, Connectivity, and Scaling. Ecosystems, 2011, 14, 880-893.	3.4	340
5	On the forest cover–water yield debate: from demand―to supplyâ€side thinking. Global Change Biology, 2012, 18, 806-820.	9.5	332
6	Resolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. Hydrological Processes, 2004, 18, 185-189.	2.6	300
7	Thirtyâ€five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Clobal Change Biology, 2008, 14, 1191-1198.	9.5	261
8	Current Browning of Surface Waters Will Be Further Promoted by Wetter Climate. Environmental Science and Technology Letters, 2016, 3, 430-435.	8.7	257
9	Human domination of the global water cycle absent from depictions and perceptions. Nature Geoscience, 2019, 12, 533-540.	12.9	245
10	Pollution: Do microplastics spill on to farm soils?. Nature, 2016, 537, 488-488.	27.8	240
11	A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. Forest Ecology and Management, 2011, 262, 95-104.	3.2	234
12	Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment. Science of the Total Environment, 2020, 724, 138334.	8.0	210
13	The Krycklan Catchment Study-A flagship infrastructure for hydrology, biogeochemistry, and climate research in the boreal landscape. Water Resources Research, 2013, 49, 7154-7158.	4.2	207
14	Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure. Environmental Pollution, 2016, 208, 704-713.	7.5	189
15	Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff. Water Resources Research, 2004, 40, .	4.2	176
16	Evasion of <scp>CO</scp> ₂ from streams – The dominant component of the carbon export through the aquatic conduit in a boreal landscape. Global Change Biology, 2013, 19, 785-797.	9.5	175
17	Modeling the mechanisms that control in-stream dissolved organic carbon dynamics in upland and forested catchments. Water Resources Research, 2007, 43, .	4.2	162
18	Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network. Journal of Geophysical Research, 2007, 112, .	3.3	145

#	Article	IF	CITATIONS
19	Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnology and Oceanography, 2007, 52, 2013-2026.	3.1	143
20	Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality. Water Research, 2016, 97, 122-132.	11.3	141
21	Dissolved Inorganic Carbon Export Across the Soil/Stream Interface and Its Fate in a Boreal Headwater Stream. Environmental Science & Technology, 2009, 43, 7364-7369.	10.0	138
22	Groundwater dynamics along a hillslope: A test of the steady state hypothesis. Water Resources Research, 2003, 39, .	4.2	133
23	Dissolved organic carbon characteristics in boreal streams in a forestâ€wetland gradient during the transition between winter and summer. Journal of Geophysical Research, 2008, 113, .	3.3	125
24	In-lake measures for phosphorus control: The most feasible and cost-effective solution for long-term management of water quality in urban lakes. Water Research, 2016, 97, 142-152.	11.3	121
25	The Swedish monitoring of surface waters: 50Âyears of adaptive monitoring. Ambio, 2014, 43, 3-18.	5.5	120
26	THE EFFECT OF EL NIÑO-RELATED DROUGHT ON THE RECOVERY OF ACIDIFIED LAKES. Environmental Monitoring and Assessment, 1997, 46, 105-111.	2.7	117
27	Variability in organic carbon reactivity across lake residence time and trophic gradients. Nature Geoscience, 2017, 10, 832-835.	12.9	114
28	Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics. Environmental Sciences: Processes and Impacts, 2015, 17, 1057-1069.	3.5	109
29	Title is missing!. , 2002, 64, 269-281.		108
30	Is a Universal Model of Organic Acidity Possible:  Comparison of the Acid/Base Properties of Dissolved Organic Carbon in the Boreal and Temperate Zones. Environmental Science & Technology, 2003, 37, 1726-1730.	10.0	106
31	Upscaling Nitrogen Removal Capacity from Local Hotspots to Low Stream Orders' Drainage Basins. Ecosystems, 2015, 18, 1101-1120.	3.4	104
32	In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes. PLoS ONE, 2013, 8, e70598.	2.5	103
33	Spatial Variation of Streamwater Chemistry in Two Swedish Boreal Catchments:  Implications for Environmental Assessment. Environmental Science & Technology, 2005, 39, 1463-1469.	10.0	101
34	Impacts of climate change on hydrology and water quality: Future proofing management strategies in the Lake Simcoe watershed, Canada. Journal of Great Lakes Research, 2013, 39, 19-32.	1.9	101
35	Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network: Concentrations and downstream fluxes. Journal of Geophysical Research, 2010, 115, .	3.3	100
36	Cold winter soils enhance dissolved organic carbon concentrations in soil and stream water. Geophysical Research Letters, 2010, 37, .	4.0	100

#	Article	IF	CITATIONS
37	Terrestrial sources of methylmercury in surface waters: The importance of the riparian zone on the Svartberget Catchment. Water, Air, and Soil Pollution, 1995, 80, 435-444.	2.4	95
38	Forest cover change over four decades in the Blue Nile Basin, Ethiopia: comparison of three watersheds. Regional Environmental Change, 2014, 14, 253-266.	2.9	91
39	Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. Science of the Total Environment, 2020, 721, 137647.	8.0	91
40	Effect of Climate Change on Soil Temperature in Swedish Boreal Forests. PLoS ONE, 2014, 9, e93957.	2.5	90
41	Microplastics in terrestrial ecosystems: Moving beyond the state of the art to minimize the risk of ecological surprise. Global Change Biology, 2021, 27, 3969-3986.	9.5	88
42	Spatial distribution and source tracing of per- and polyfluoroalkyl substances (PFASs) in surface water in Northern Europe. Environmental Pollution, 2017, 220, 1438-1446.	7.5	87
43	Long-term dynamics of dissolved organic carbon: Implications for drinking water supply. Science of the Total Environment, 2012, 432, 1-11.	8.0	86
44	PERSiST: a flexible rainfall-runoff modelling toolkit for use with the INCA family of models. Hydrology and Earth System Sciences, 2014, 18, 855-873.	4.9	84
45	The relative influence of land cover, hydrology, and inâ€stream processing on the composition of dissolved organic matter in boreal streams. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1491-1505.	3.0	84
46	Long-term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: trends, mechanisms and heterogeneity. Biogeosciences, 2013, 10, 2315-2330.	3.3	82
47	Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes. Scientific Reports, 2017, 7, 9158.	3.3	81
48	Water storage in a till catchment. II: Implications of transmissivity feedback for flow paths and turnover times. Hydrological Processes, 2011, 25, 3950-3959.	2.6	80
49	Silicate mineral weathering rate estimates: Are they precise enough to be useful when predicting the recovery of nutrient pools after harvesting?. Forest Ecology and Management, 2011, 261, 1-9.	3.2	76
50	Nitrogen dynamics in managed boreal forests: Recent advances and future research directions. Ambio, 2016, 45, 175-187.	5.5	76
51	Dynamic modeling of the Ganga river system: impacts of future climate and socio-economic change on flows and nitrogen fluxes in India and Bangladesh. Environmental Sciences: Processes and Impacts, 2015, 17, 1082-1097.	3.5	73
52	Primary weathering rates, water transit times, and concentrationâ€discharge relations: A theoretical analysis for the critical zone. Water Resources Research, 2017, 53, 942-960.	4.2	73
53	Towards an Improved Conceptualization of Riparian Zones in Boreal Forest Headwaters. Ecosystems, 2018, 21, 297-315.	3.4	71
54	Response of Dissolved Organic Carbon following Forest Harvesting in a Boreal Forest. Ambio, 2009, 38, 381-386.	5.5	70

4

#	Article	IF	CITATIONS
55	The Effects of Forestry on Hg Bioaccumulation in Nemoral/Boreal Waters and Recommendations for Good Silvicultural Practice. Ambio, 2009, 38, 373-380.	5.5	69
56	Consequences of More Intensive Forestry for the Sustainable Management of Forest Soils and Waters. Forests, 2011, 2, 243-260.	2.1	68
57	Identification of the riparian sources of aquatic dissolved organic carbon. Environment International, 1994, 20, 11-19.	10.0	67
58	Patterns and trends in Southern Ontario lake ice phenology. Environmental Monitoring and Assessment, 2003, 88, 431-444.	2.7	66
59	Critical levels of atmospheric pollution: criteria and concepts for operational modelling of mercury in forest and lake ecosystems. Science of the Total Environment, 2003, 304, 83-106.	8.0	66
60	Toward catchment hydroâ€biogeochemical theories. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1495.	6.5	65
61	Consequences of nitrate leaching following stem-only harvesting of Swedish forests are dependent on spatial scale. Environmental Pollution, 2010, 158, 3552-3559.	7.5	64
62	Almost 50Âyears of monitoring shows that climate, not forestry, controls longâ€ŧerm organic carbon fluxes in a large boreal watershed. Global Change Biology, 2014, 20, 1225-1237.	9.5	64
63	Flux Rates of Atmospheric Lead Pollution within Soils of a Small Catchment in Northern Sweden and Their Implications for Future Stream Water Quality. Environmental Science & Technology, 2006, 40, 4639-4645.	10.0	63
64	Cleaning up seas using blue growth initiatives: Mussel farming for eutrophication control in the Baltic Sea. Science of the Total Environment, 2020, 709, 136144.	8.0	63
65	Riparian soil temperature modification of the relationship between flow and dissolved organic carbon concentration in a boreal stream. Water Resources Research, 2011, 47, .	4.2	62
66	Long-term trends in water chemistry of acid-sensitive Swedish lakes show slow recovery from historic acidification. Ambio, 2014, 43, 77-90.	5.5	62
67	An assessment of the fine sediment dynamics in an upland river system: INCA-Sed modifications and implications for fisheries. Science of the Total Environment, 2010, 408, 2555-2566.	8.0	61
68	The role of biogeochemical hotspots, landscape heterogeneity, and hydrological connectivity for minimizing forestry effects on water quality. Ambio, 2016, 45, 152-162.	5.5	60
69	Persistent and widespread long-term phosphorus declines in Boreal lakes in Sweden. Science of the Total Environment, 2018, 613-614, 240-249.	8.0	60
70	Intraâ€annual variability of organic carbon concentrations in running waters: Drivers along a climatic gradient. Global Biogeochemical Cycles, 2014, 28, 451-464.	4.9	59
71	Soil frost and runoff at Svartberget, northern Sweden-measurements and model analysis. Hydrological Processes, 2002, 16, 3379-3392.	2.6	58
72	Forest Cover and Stream Flow in a Headwater of the Blue Nile: Complementing Observational Data Analysis with Community Perception. Ambio, 2010, 39, 284-294.	5.5	58

#	Article	IF	CITATIONS
73	High methylmercury formation in ponds fueled by fresh humic and algal derived organic matter. Limnology and Oceanography, 2018, 63, S44.	3.1	58
74	Reviews and syntheses: Biological weathering and its consequences at different spatial levels – from nanoscale to global scale. Biogeosciences, 2020, 17, 1507-1533.	3.3	58
75	Total Phosphorus Budgets and Nitrogen Loads: Lake Simcoe, Ontario (1990 to 1998). Journal of Great Lakes Research, 2002, 28, 301-314.	1.9	56
76	Impact of Forestry on Total and Methyl-Mercury in Surface Waters: Distinguishing Effects of Logging and Site Preparation. Environmental Science & amp; Technology, 2014, 48, 4690-4698.	10.0	55
77	Forest Harvest Increases Runoff Most during Low Flows in Two Boreal Streams. Ambio, 2009, 38, 357-363.	5.5	53
78	A classification and regression tree model of controls on dissolved inorganic nitrogen leaching from European forests. Environmental Pollution, 2008, 156, 544-552.	7.5	52
79	A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120413.	3.4	52
80	Ecological resilience in lakes and the conjunction fallacy. Nature Ecology and Evolution, 2017, 1, 1616-1624.	7.8	52
81	Presence of nanoplastics in rural and remote surface waters. Environmental Research Letters, 2022, 17, 054036.	5.2	52
82	Influence of organic acid site density on pH modeling of Swedish lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56, 1461-1470.	1.4	51
83	Mercury cycling in boreal ecosystems: The long-term effect of acid rain constituents on peatland pore water methylmercury concentrations. Geophysical Research Letters, 2001, 28, 1227-1230.	4.0	51
84	Riparian zone control on base cation concentration in boreal streams. Biogeosciences, 2013, 10, 3849-3868.	3.3	51
85	Managing Swedish forestry's impact on mercury in fish: Defining the impact and mitigation measures. Ambio, 2016, 45, 163-174.	5.5	50
86	Boreal forest riparian zones regulate stream sulfate and dissolved organic carbon. Science of the Total Environment, 2016, 560-561, 110-122.	8.0	50
87	Simulating streamflow in ungauged basins under a changing climate: The importance of landscape characteristics. Journal of Hydrology, 2018, 561, 160-178.	5.4	50
88	Testing seasonal and long-term controls of streamwater DOC using empirical and process-based modelsâ~†. Science of the Total Environment, 2008, 407, 698-707.	8.0	49
89	Carbon dioxide and methane emissions of Swedish lowâ€order streams—a national estimate and lessons learnt from more than a decade of observations. Limnology and Oceanography Letters, 2018, 3, 156-167.	3.9	49
90	Acid/base character of organic acids in a boreal stream during snowmelt. Water Resources Research, 2001, 37, 1043-1056.	4.2	48

#	Article	IF	CITATIONS
91	Spatial heterogeneity of the spring flood acid pulse in a boreal stream networkâ~†. Science of the Total Environment, 2008, 407, 708-722.	8.0	48
92	The interactive responses of water quality and hydrology to changes in multiple stressors, and implications for the long-term effective management of phosphorus. Science of the Total Environment, 2013, 454-455, 230-244.	8.0	47
93	Patterns and drivers of riverine nitrogen (N) across alpine, subarctic, and boreal Sweden. Biogeochemistry, 2014, 120, 105-120.	3.5	47
94	Representative regional sampling of carbon dioxide and methane concentrations in hemiboreal headwater streams reveal underestimates in less systematic approaches. Global Biogeochemical Cycles, 2014, 28, 465-479.	4.9	47
95	Increasing Dissolved Organic Carbon Redefines the Extent of Surface Water Acidification and Helps Resolve a Classic Controversy. BioScience, 2011, 61, 614-618.	4.9	46
96	Meta-analysis of environmental effects of beaver in relation to artificial dams. Environmental Research Letters, 2017, 12, 113002.	5.2	46
97	Global importance of methane emissions from drainage ditches and canals. Environmental Research Letters, 2021, 16, 044010.	5.2	45
98	Northern landscapes in transition: Evidence, approach and ways forward using the Krycklan Catchment Study. Hydrological Processes, 2021, 35, e14170.	2.6	45
99	Mercury evasion from a boreal peatland shortens the timeline for recovery from legacy pollution. Scientific Reports, 2017, 7, 16022.	3.3	44
100	A water cycle for the Anthropocene. Hydrological Processes, 2019, 33, 3046-3052.	2.6	44
101	Modeling the dissolved organic carbon output from a boreal mire using the convectionâ€dispersion equation: Importance of representing sorption. Water Resources Research, 2008, 44, .	4.2	43
102	Stream Nitrate Responds Rapidly to Decreasing Nitrate Deposition. Ecosystems, 2011, 14, 274-286.	3.4	43
103	Significant interaction effects from sulfate deposition and climate on sulfur concentrations constitute major controls on methylmercury production in peatlands. Geochimica Et Cosmochimica Acta, 2013, 102, 1-11.	3.9	42
104	A long-term simulation of the effects of acidic deposition and climate change on surface water dissolved organic carbon concentrations in a boreal catchment. Hydrology Research, 2009, 40, 291-305.	2.7	41
105	Riparian Zone Influence on Stream Water Dissolved Organic Carbon Concentrations at the Swedish Integrated Monitoring Sites. Ambio, 2011, 40, 920-930.	5.5	41
106	Variability in spectral absorbance metrics across boreal lake waters. Journal of Environmental Monitoring, 2012, 14, 2643.	2.1	41
107	Is the Water Footprint an Appropriate Tool for Forestry and Forest Products: The Fennoscandian Case. Ambio, 2014, 43, 244-256.	5.5	41
108	A Review of the Components, Coefficients and Technical Assumptions of Ontario's Lakeshore Capacity Model. Lake and Reservoir Management, 2006, 22, 7-18.	1.3	40

#	Article	IF	CITATIONS
109	Uncertainty in silicate mineral weathering rate estimates: source partitioning and policy implications. Environmental Research Letters, 2012, 7, 024025.	5.2	40
110	Particulate phosphorus and suspended solids losses from small agricultural catchments: Links to stream and catchment characteristics. Science of the Total Environment, 2020, 711, 134616.	8.0	39
111	Evolution of soil solution aluminum during transport along a forested boreal hillslope. Journal of Geophysical Research, 2007, 112, .	3.3	38
112	Simulating Dissolved Organic Carbon Dynamics at the Swedish Integrated Monitoring Sites with the Integrated Catchments Model for Carbon, INCA-C. Ambio, 2011, 40, 906-919.	5.5	38
113	Impact of stump harvest on run-off concentrations of total mercury and methylmercury. Forest Ecology and Management, 2013, 290, 83-94.	3.2	38
114	Flows and sediment dynamics in the Ganga River under present and future climate scenarios. Hydrological Sciences Journal, 2018, 63, 763-782.	2.6	38
115	Organic carbon in the boreal spring flood from adjacent subcatchments. Environment International, 1996, 22, 535-540.	10.0	37
116	The Effects of Forest Harvest Operations on Mercury and Methylmercury in Two Boreal Streams: Relatively Small Changes in the First Two Years prior to Site Preparation. Ambio, 2009, 38, 364-372.	5.5	37
117	Modelling phosphorus dynamics in multi-branch river systems: A study of the Black River, Lake Simcoe, Ontario, Canada. Science of the Total Environment, 2011, 412-413, 315-323.	8.0	37
118	Forestry Influence by Stump Harvest and Site Preparation on Methylmercury, Total Mercury and Other Stream Water Chemistry Parameters Across a Boreal Landscape. Ecosystems, 2012, 15, 1308-1320.	3.4	36
119	Modelling the effects of climate on long-term patterns of dissolved organic carbon concentrations in the surface waters of a boreal catchment. Hydrology and Earth System Sciences, 2008, 12, 437-447.	4.9	35
120	Direct and indirect effects of increasing dissolved organic carbon levels on pH in lakes recovering from acidification. Journal of Geophysical Research, 2010, 115, .	3.3	35
121	Spatial and temporal variation of THg concentrations in run-off water from 19 boreal catchments, 2000–2010. Environmental Pollution, 2012, 164, 102-109.	7.5	35
122	Assessing the impacts of climate change and socio-economic changes on flow and phosphorus flux in the Ganga river system. Environmental Sciences: Processes and Impacts, 2015, 17, 1098-1110.	3.5	35
123	Modelling the impacts of climate change on flow and nitrate in the River Thames: assessing potential adaptation strategies. Hydrology Research, 2012, 43, 902-916.	2.7	34
124	Pelagic food-web structure influences probability of mercury contamination in lake trout (Salvelinus) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
125	Currently legislated decreases in nitrogen deposition will yield only limited plant species recovery in European forests. Environmental Research Letters, 2018, 13, 125010.	5.2	32

126An evaluation of high frequency turbidity as a proxy for riverine total phosphorus concentrations.
Science of the Total Environment, 2019, 651, 103-113.8.032

#	Article	IF	CITATIONS
127	A Novel Environmental Quality Criterion for Acidification in Swedish Lakes – An Application of Studies on the Relationship Between Biota and Water Chemistry. Water, Air and Soil Pollution, 2007, 7, 331-338.	0.8	31
128	An INCA model for pathogens in rivers and catchments: Model structure, sensitivity analysis and application to the River Thames catchment, UK. Science of the Total Environment, 2016, 572, 1601-1610.	8.0	31
129	Potential impacts of a future Nordic bioeconomy on surface water quality. Ambio, 2020, 49, 1722-1735.	5.5	31
130	Assessment of contaminant fate in catchments using a novel integrated hydrobiogeochemical-multimedia fate model. Science of the Total Environment, 2016, 544, 553-563.	8.0	30
131	Pipes or chimneys? For carbon cycling in small boreal lakes, precipitation matters most. Limnology and Oceanography Letters, 2018, 3, 275-284.	3.9	30
132	Managing Forests for Both Downstream and Downwind Water. Frontiers in Forests and Global Change, 2019, 2, .	2.3	30
133	Seasonal and runoff-related changes in total organic carbon concentrations in the River Öre, Northern Sweden. Aquatic Sciences, 2008, 70, 21-29.	1.5	29
134	Landscape-scale control of carbon budget of Lake Simcoe: A process-based modelling approach. Journal of Great Lakes Research, 2011, 37, 160-165.	1.9	29
135	Hydrological change detection using modeling: Half a century of runoff from four rivers in the Blue Nile Basin. Water Resources Research, 2013, 49, 3842-3851.	4.2	29
136	Fate and transport of polychlorinated biphenyls (PCBs) in the River Thames catchment – Insights from a coupled multimedia fate and hydrobiogeochemical transport model. Science of the Total Environment, 2016, 572, 1461-1470.	8.0	29
137	Gridded climate data products are an alternative to instrumental measurements as inputs to rainfall–runoff models. Hydrological Processes, 2017, 31, 3283-3293.	2.6	29
138	Water quality assessment and catchment-scale nutrient flux modeling in the Ramganga River Basin in north India: An application of INCA model. Science of the Total Environment, 2018, 631-632, 201-215.	8.0	29
139	Water renewal along the aquatic continuum offsets cumulative retention by lakes: implications for the character of organic carbon in boreal lakes. Aquatic Sciences, 2013, 75, 535-545.	1.5	28
140	Paleoecological evidence of major declines in total organic carbon concentrations since the nineteenth century in four nemoboreal lakes. Journal of Paleolimnology, 2011, 45, 507-518.	1.6	27
141	Aquatic DOC export from subarctic Atlantic blanket bog in Norway is controlled by seasalt deposition, temperature and precipitation. Biogeochemistry, 2016, 127, 305-321.	3.5	27
142	Conceptualizing and communicating management effects on forest water quality. Ambio, 2016, 45, 188-202.	5.5	27
143	The Influence of Sulphate Deposition on the Seasonal Variation of Peat Pore Water Methyl Hg in a Boreal Mire. PLoS ONE, 2012, 7, e45547.	2.5	26
144	Long-term trends in hydro-climatology of a major Scottish mountain river. Science of the Total Environment, 2009, 407, 4633-4641.	8.0	25

#	Article	IF	CITATIONS
145	Modelling the long term impact of climate change on the carbon budget of Lake Simcoe, Ontario using INCA-C. Science of the Total Environment, 2012, 414, 387-403.	8.0	25
146	Assessing temporal scales and patterns in time series: Comparing methods based on redundancy analysis. Ecological Complexity, 2015, 22, 162-168.	2.9	25
147	Modelling ice cover, timing of spring stratification, and end-of-season mixing depth in small Precambrian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 2134-2142.	1.4	24
148	Modelling nitrogen in the YeÅŸilirmak River catchment in Northern Turkey: Impacts of future climate and environmental change and implications for nutrient management. Science of the Total Environment, 2011, 409, 2404-2418.	8.0	24
149	Problems with the reconciliation of good ecological status and public participation in the Water Framework Directive. Science of the Total Environment, 2012, 433, 482-490.	8.0	24
150	Using the INCA-Hg model of mercury cycling to simulate total and methyl mercury concentrations in forest streams and catchments. Science of the Total Environment, 2012, 424, 219-231.	8.0	24
151	Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography. Hydrology and Earth System Sciences, 2014, 18, 5125-5148.	4.9	24
152	Adjacent catchments with similar patterns of land use and climate have markedly different dissolved organic carbon concentration and runoff dynamics. Hydrological Processes, 2014, 28, 1436-1449.	2.6	24
153	Stream Dissolved Organic Matter Composition Reflects the Riparian Zone, Not Upslope Soils in Boreal Forest Headwaters. Water Resources Research, 2018, 54, 3896-3912.	4.2	24
154	Optimizing land management strategies for maximum improvements in lake dissolved oxygen concentrations. Science of the Total Environment, 2019, 652, 382-397.	8.0	24
155	Nature as the "Natural―Goal for Water Management: A Conversation. Ambio, 2009, 38, 209-214.	5.5	23
156	Evaluating common drivers for color, iron and organic carbon in Swedish watercourses. Ambio, 2014, 43, 30-44.	5.5	23
157	Local―and landscapeâ€scale impacts of clearâ€cuts and climate change on surface water dissolved organic carbon in boreal forests. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2402-2426.	3.0	23
158	Relations between organic carbon and methylmercury in humic rich surface waters from Svartberget catchment in northern Sweden. Water, Air, and Soil Pollution, 1995, 80, 971-979.	2.4	22
159	Assessing nitrogen dynamics in European ecosystems, integrating measurement and modelling: conclusions. Hydrology and Earth System Sciences, 2004, 8, 846-857.	4.9	22
160	The impacts of future climate change and sulphur emission reductions on acidification recovery at Plastic Lake, Ontario. Hydrology and Earth System Sciences, 2008, 12, 383-392.	4.9	22
161	Cross-scale ensemble projections of dissolved organic carbon dynamics in boreal forest streams. Climate Dynamics, 2014, 42, 2305-2321.	3.8	22
162	Rainfall runoff modelling of the Upper Ganga and Brahmaputra basins using PERSiST. Environmental Sciences: Processes and Impacts, 2015, 17, 1070-1081.	3.5	22

#	Article	IF	CITATIONS
163	Modelling the effects of changing climate and nitrogen deposition on nitrate dynamics in a Scottish mountain catchment. Hydrology Research, 2009, 40, 153-166.	2.7	21
164	Uncertainty assessments and hydrological implications of climate change in two adjacent agricultural catchments of a rapidly urbanizing watershed. Science of the Total Environment, 2014, 473-474, 326-337.	8.0	21
165	Optimization of aluminum treatment efficiency to control internal phosphorus loading in eutrophic lakes. Water Research, 2020, 185, 116150.	11.3	21
166	Cantilevering vertical tow nets to reduce tow-line-induced zooplankton avoidance. Journal of Plankton Research, 1993, 15, 581-587.	1.8	20
167	Modeling stream dissolved organic carbon concentrations during spring flood in the boreal forest: A simple empirical approach for regional predictions. Journal of Geophysical Research, 2010, 115, .	3.3	20
168	Phosphorus dynamics across intensively monitored subcatchments in the Beaver River. Inland Waters, 2013, 3, 187-206.	2.2	20
169	Impact of Beaver Pond Colonization History on Methylmercury Concentrations in Surface Water. Environmental Science & Technology, 2015, 49, 12679-12687.	10.0	20
170	Sensitivity of stream dissolved organic carbon to temperature and discharge: Implications of future climates. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 126-144.	3.0	20
171	Landâ€use dominates climate controls on nitrogen and phosphorus export from managed and natural Nordic headwater catchments. Hydrological Processes, 2020, 34, 4831-4850.	2.6	20
172	Spatial and temporal variation in Arctic freshwater chemistry—Reflecting climateâ€induced landscape alterations and a changing template for biodiversity. Freshwater Biology, 2022, 67, 14-29.	2.4	20
173	Forest-Water Interactions Under Global Change. Ecological Studies, 2020, , 589-624.	1.2	20
174	Simple Models to Estimate Historical and Recent Changes of Total Organic Carbon Concentrations in Lakes. Environmental Science & Technology, 2015, 49, 386-394.	10.0	19
175	Modelling metaldehyde in catchments: a River Thames case-study. Environmental Sciences: Processes and Impacts, 2017, 19, 586-595.	3.5	19
176	Does the harvest of logging residues and wood ash application affect the mobilization and bioavailability of trace metals?. Forest Ecology and Management, 2017, 383, 61-72.	3.2	19
177	Does forest harvest increase the mercury concentrations in fish? Evidence from Swedish lakes. Science of the Total Environment, 2018, 622-623, 1353-1362.	8.0	19
178	Drivers of longâ€ŧerm invertebrate community stability in changing Swedish lakes. Global Change Biology, 2020, 26, 1259-1270.	9.5	19
179	Forests, Forestry and the Water Framework Directive in Sweden: A Trans-Disciplinary Commentary. Forests, 2011, 2, 261-282.	2.1	18
180	Parsimonious Model for Simulating Total Mercury and Methylmercury in Boreal Streams Based on Riparian Flow Paths and Seasonality. Environmental Science & Technology, 2015, 49, 7851-7859.	10.0	18

#	Article	IF	CITATIONS
181	Ecohydrological consequences of tree removal in an urban park evaluated using open data, free software and a minimalist measuring campaign. Science of the Total Environment, 2019, 655, 1495-1504.	8.0	18
182	Climate proofing Scottish river basin planning – a future challenge. Environmental Policy and Governance, 2009, 19, 374-387.	3.7	17
183	Persistent Organic Pollutants in Streamwater: Influence of Hydrological Conditions and Landscape Type. Environmental Science & Technology, 2016, 50, 7416-7424.	10.0	17
184	Modelling study of soil C, N and pH response to air pollution and climate change using European LTER site observations. Science of the Total Environment, 2018, 640-641, 387-399.	8.0	17
185	New Insights Into Legacy Phosphorus From Fractionation of Streambed Sediment. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005763.	3.0	17
186	Changes in body dimensions of larval Chaoborus in ethanol and formalin. Journal of Plankton Research, 1994, 16, 1601-1608.	1.8	16
187	Natural Variability in Lake pH on Seasonal, Interannual and Decadal Time Scales: Implications for Assessment of Human Impact. Environmental Science & Technology, 2008, 42, 5594-5599.	10.0	16
188	Sensitivity of pH in a boreal stream network to a potential decrease in base cations caused by forest harvest. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1116-1125.	1.4	16
189	Assessment of Uncertainty in Long-Term Mass Balances for Acidification Assessments: A MAGIC Model Exercise. Ambio, 2011, 40, 891-905.	5.5	16
190	Assessing anthropogenic impact on boreal lakes with historical fish species distribution data and hydrogeochemical modeling. Global Change Biology, 2014, 20, 2752-2764.	9.5	16
191	Can recovery from disturbance explain observed declines in total phosphorus in Precambrian Shield catchments?. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 1202-1212.	1.4	16
192	Water storage dynamics in a till hillslope: the foundation for modeling flows and turnover times. Hydrological Processes, 2017, 31, 4-14.	2.6	16
193	Peatland ditch blocking has no effect on dissolved organic matter (<scp>DOM</scp>) quality. Hydrological Processes, 2018, 32, 3891-3906.	2.6	16
194	Patterns and predictability in the intra-annual organic carbon variability across the boreal and hemiboreal landscape. Science of the Total Environment, 2015, 520, 260-269.	8.0	15
195	Using dry and wet year hydroclimatic extremes to guide future hydrologic projections. Hydrology and Earth System Sciences, 2016, 20, 2811-2825.	4.9	15
196	Consequences of intensive forest harvesting on the recovery of Swedish lakes from acidification and on critical load exceedances. Science of the Total Environment, 2017, 603-604, 562-569.	8.0	15
197	Lagged rejuvenation of groundwater indicates internal flow structures and hydrological connectivity. Hydrological Processes, 2020, 34, 2176-2189.	2.6	15
198	Brownification on hold: What traditional analyses miss in extended surface water records. Water Research, 2021, 203, 117544.	11.3	15

#	Article	IF	CITATIONS
199	The Significance of Shifts in Precipitation Patterns: Modelling the Impacts of Climate Change and Glacier Retreat on Extreme Flood Events in Denali National Park, Alaska. PLoS ONE, 2013, 8, e74054.	2.5	15
200	Hydrological footprints of urban developments in the Lake Simcoe watershed, Canada: a combined pairedâ€catchment and change detection modelling approach. Hydrological Processes, 2015, 29, 1829-1843.	2.6	14
201	Constitution of a catchment virtual observatory for sharing flow and transport models outputs. Journal of Hydrology, 2016, 543, 59-66.	5.4	14
202	Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest. Climatic Change, 2017, 143, 27-41.	3.6	14
203	Community perceptions of forest–water relationships in the Blue Nile Basin of Ethiopia. Geo Journal, 2014, 79, 605-618.	3.1	13
204	A New, Catchment-Scale Integrated Water Quality Model of Phosphorus, Dissolved Oxygen, Biochemical Oxygen Demand and Phytoplankton: INCA-Phosphorus Ecology (PEco). Water (Switzerland), 2021, 13, 723.	2.7	13
205	A Comparison of MAGIC and Paleolimnological Predictions of Preindustrial pH for 55 Swedish Lakes. Environmental Science & Technology, 2008, 42, 43-48.	10.0	12
206	Conceptual Mini-Catchment Typologies for Testing Dominant Controls of Nutrient Dynamics in Three Nordic Countries. Water (Switzerland), 2020, 12, 1776.	2.7	12
207	Significant Emissions From Forest Drainage Ditches—An Unaccounted Term in Anthropogenic Greenhouse Gas Inventories?. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006478.	3.0	12
208	Effect of DEM-smoothing and -aggregation on topographically-based flow directions and catchment boundaries. Journal of Hydrology, 2021, 602, 126717.	5.4	12
209	Weathering rates in Swedish forest soils. Biogeosciences, 2019, 16, 4429-4450.	3.3	11
210	Dynamic Modelling of the Impact of Climate Change and Power Flow Management Options using STELLA: Application to the Steephill Falls Reservoir, Ontario, Canada. Canadian Water Resources Journal, 2012, 37, 125-148.	1.2	10
211	Ecological Instability in Lakes: A Predictable Condition?. Environmental Science & Technology, 2016, 50, 3285-3286.	10.0	10
212	Modeling nonlinear responses of DOC transport in boreal catchments in Sweden. Water Resources Research, 2016, 52, 4970-4989.	4.2	9
213	Minimal climate change impacts on natural organic matter forecasted for a potable water supply in Ireland. Science of the Total Environment, 2018, 630, 869-877.	8.0	9
214	From wicked problem to governable entity? The effects of forestry on mercury in aquatic ecosystems. Forest Policy and Economics, 2018, 90, 90-96.	3.4	9
215	Understanding Dissolved Organic Matter Reactivity and Composition in Lakes and Streams Using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). Environmental Science and Technology Letters, 2018, 5, 739-744.	8.7	9
216	Trilemma of Nordic–Baltic Forestry—How to Implement UN Sustainable Development Goals. Sustainability, 2021, 13, 5643.	3.2	9

#	Article	IF	CITATIONS
217	Longer Growing Seasons Cause Hydrological Regime Shifts in Central European Forests. Forests, 2021, 12, 1656.	2.1	9
218	Assessing the potential for sea-based macroalgae cultivation and its application for nutrient removal in the Baltic Sea. Science of the Total Environment, 2022, 839, 156230.	8.0	9
219	The effectiveness and resilience of phosphorus management practices in the Lake Simcoe watershed, Ontario, Canada. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2390-2409.	3.0	8
220	Simulation of water and chemical transport of chloride from the forest ecosystem to the stream. Environmental Modelling and Software, 2021, 138, 104984.	4.5	8
221	Impacts of Droughts and Acidic Deposition on Long-Term Surface Water Dissolved Organic Carbon Concentrations in Upland Catchments in Wales. Frontiers in Environmental Science, 0, 8, .	3.3	8
222	Periodic multivariate normal hidden markov models for the analysis of water quality time series. Environmetrics, 2011, 22, 304-317.	1.4	7
223	A Hydrological Concept including Lateral Water Flow Compatible with the Biogeochemical Model ForSAFE. Hydrology, 2016, 3, 11.	3.0	7
224	Elevated temperature and browning increase dietary methylmercury, but decrease essential fatty acids at the base of lake food webs. Scientific Reports, 2021, 11, 16859.	3.3	7
225	A metamodel based on MAGIC to predict the pre-industrial acidity status of surface waters. Aquatic Sciences, 2008, 70, 238-247.	1.5	6
226	Modelling impacts of seasonal wastewater treatment plant effluent permits and biosolid substitution for phosphorus management in catchments and river systems. Hydrology Research, 2015, 46, 313-324.	2.7	6
227	Development of Aerial Photos and LIDAR Data Approaches to Map Spatial and Temporal Evolution of Ditch Networks in Peat-Dominated Catchments. Journal of Irrigation and Drainage Engineering - ASCE, 2021, 147, .	1.0	6
228	Nutrient Load Mitigation with Wintertime Cover as Estimated by the INCA Model. Water (Switzerland), 2021, 13, 450.	2.7	5
229	Soil moisture storage estimation based on steady vertical fluxes under equilibrium. Journal of Hydrology, 2017, 553, 798-804.	5.4	4
230	Estimation of p,p'-DDT degradation in soil by modeling and constraining hydrological and biogeochemical controls. Environmental Pollution, 2018, 239, 179-188.	7.5	4
231	Statistical models for evaluating suspected artefacts in long-term environmental monitoring data. Environmental Monitoring and Assessment, 2018, 190, 558.	2.7	4
232	Future changes in the Dominant Source Layer of riparian lateral water fluxes in a subhumid Mediterranean catchment. Journal of Hydrology, 2021, 595, 126014.	5.4	4
233	A 25-year retrospective analysis of factors influencing success of aluminum treatment for lake restoration. Water Research, 2021, 200, 117267.	11.3	4
234	Use of stable Mg isotope ratios in identifying the base cation sources of stream water in the boreal Krycklan catchment (Sweden). Chemical Geology, 2022, 588, 120651.	3.3	4

#	ARTICLE	IF	CITATIONS
235	Turbidityâ€discharge hysteresis in a mesoâ€scale catchment: The importance of intermediate scale events. Hydrological Processes, 2021, 35, e14435.	2.6	4
236	Hydrology, forests and precipitation recycling: a reply to van der Ent et al. Global Change Biology, 2012, 18, 3272-3274.	9.5	3
237	Effects of conservation strip and crop type on natural enemies of <i><scp>D</scp>elia radicum</i> . Journal of Applied Entomology, 2016, 140, 287-298.	1.8	3
238	Variability in fluvial suspended and streambed sediment phosphorus fractions among small agricultural streams. Journal of Environmental Quality, 2021, 50, 612-626.	2.0	3
239	Stakeholder Perspectives on Blue Mussel Farming to Mitigate Baltic Sea Eutrophication. Sustainability, 2021, 13, 9180.	3.2	3
240	Modelling stream and soil water nitrate dynamics during experimentally increased nitrogen deposition in a coniferous forest catchment at GÃ¥rdsjA¶n, Sweden. Hydrology Research, 2009, 40, 187-197.	2.7	2
241	Response to a letter to editor regarding Kotta et al. 2020: Cleaning up seas using blue growth initiatives: Mussel farming for eutrophication control in the Baltic Sea. Science of the Total Environment, 2020, 739, 138712.	8.0	2
242	Where and When to Collect Tracer Data to Diagnose Hillslope Permeability Architecture. Water Resources Research, 2021, 57, e2020WR028719.	4.2	2
243	Influence of the Landscape Template on Chemical and Physical Habitat for Brown Trout Within a Boreal Stream Network. Frontiers in Water, 2021, 3, .	2.3	1
244	Commentary: A (Mostly) Hydrological Commentary on the Small Retention Programs in the Polish Forests. , 2019, , 39-43.		1
245	Stakeholders' Perspectives on Microplastics in Sludge Applied to Agricultural Land. Frontiers in Sustainable Food Systems, 2022, 6, .	3.9	1