List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7078541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Set ambitious goals for biodiversity and sustainability. Science, 2020, 370, 411-413.	12.6	225
2	Linking intraâ€ s pecific trait variation and plant function: seed size mediates performance tradeoffs within species. Oikos, 2019, 128, 1716-1725.	2.7	20
3	Ongoing accumulation of plant diversity through habitat connectivity in an 18-year experiment. Science, 2019, 365, 1478-1480.	12.6	92
4	Defaunation leads to interaction deficits, not interaction compensation, in an island seed dispersal network. Global Change Biology, 2018, 24, e190-e200.	9.5	28
5	Model vs. experiment to predict crop losses—Response. Science, 2018, 362, 1122-1123.	12.6	0
6	Increase in crop losses to insect pests in a warming climate. Science, 2018, 361, 916-919.	12.6	764
7	Effects of an invasive predator cascade to plants via mutualism disruption. Nature Communications, 2017, 8, 14557.	12.8	95
8	Connectivity from a different perspective: comparing seed dispersal kernels in connected vs. unfragmented landscapes. Ecology, 2016, 97, 1274-1282.	3.2	41
9	Socio-Environmental Systems (SES) Research: what have we learned and how can we use this information in future research programs. Current Opinion in Environmental Sustainability, 2016, 19, 160-168.	6.3	89
10	Disentangling fragmentation effects on herbivory in understory plants of longleaf pine savanna. Ecology, 2016, 97, 2248-2258.	3.2	17
11	Gut passage and secondary metabolites alter the source of post-dispersal predation for bird-dispersed chili seeds. Oecologia, 2016, 181, 905-910.	2.0	9
12	Climate-induced range overlap among closely related species. Nature Climate Change, 2015, 5, 883-886.	18.8	33
13	The influence of habitat fragmentation on multiple plant–animal interactions and plant reproduction. Ecology, 2015, 96, 2669-2678.	3.2	53
14	How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3484-3489.	7.1	127
15	Natural History's Place in Science and Society. BioScience, 2014, 64, 300-310.	4.9	231
16	The Role of Civil Society in Recalibrating Conservation Science Incentives. Conservation Biology, 2014, 28, 1437-1439.	4.7	2
17	Multiple natural enemies cause distanceâ€dependent mortality at the seedâ€ŧoâ€seedling transition. Ecology Letters, 2014, 17, 593-598.	6.4	93
18	Directness and tempo of avian seed dispersal increases emergence of wild chiltepins in desert grasslands. Journal of Ecology, 2014, 102, 248-255.	4.0	51

#	Article	IF	CITATIONS
19	The impact of seasonality in temperature on thermal tolerance and elevational range size. Ecology, 2014, 95, 2134-2143.	3.2	101
20	An animal-rich future. Science, 2014, 345, 400-400.	12.6	3
21	Landscape corridors can increase invasion by an exotic species and reduce diversity of native species. Ecology, 2014, 95, 2033-2039.	3.2	69
22	Effects of Hunting and Fragmentation on Terrestrial Mammals in the Chiquitano Forests of Bolivia. Tropical Conservation Science, 2014, 7, 288-307.	1.2	10
23	Habitat edge effects alter ant-guard protection against herbivory. Landscape Ecology, 2013, 28, 1743-1754.	4.2	7
24	Accidental experiments: ecological and evolutionary insights and opportunities derived from global change. Oikos, 2013, 122, 1649-1661.	2.7	32
25	Can terrestrial ectotherms escape the heat of climate change by moving?. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131149.	2.6	45
26	Connectivity Planning to Address Climate Change. Conservation Biology, 2013, 27, 407-416.	4.7	164
27	Big data and the future of ecology. Frontiers in Ecology and the Environment, 2013, 11, 156-162.	4.0	657
28	When condition trumps location: seed consumption by fruitâ€eating birds removes pathogens and predator attractants. Ecology Letters, 2013, 16, 1031-1036.	6.4	57
29	Growing Pains for Ecology in the Twenty-First Century. BioScience, 2013, 63, 69-71.	4.9	11
30	Natural Experiment Demonstrates That Bird Loss Leads to Cessation of Dispersal of Native Seeds from Intact to Degraded Forests. PLoS ONE, 2013, 8, e65618.	2.5	60
31	Habitat patch shape, not corridors, determines herbivory and fruit production of an annual plant. Ecology, 2012, 93, 1016-1025.	3.2	20
32	Ecological data in the Information Age. Frontiers in Ecology and the Environment, 2012, 10, 59-59.	4.0	11
33	Why are not all chilies hot? A trade-off limits pungency. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2012-2017.	2.6	36
34	â€~Natural experiment' Demonstrates Top-Down Control of Spiders by Birds on a Landscape Level. PLoS ONE, 2012, 7, e43446.	2.5	62
35	Assessing positive and negative ecological effects of corridors. , 2011, , 475-504.		14
36	Do species' traits predict recent shifts at expanding range edges?. Ecology Letters, 2011, 14, 677-689.	6.4	452

#	Article	IF	CITATIONS
37	Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure. Ecology Letters, 2011, 14, 1191-1200.	6.4	161
38	Heating up relations between cold fish: competition modifies responses to climate change. Journal of Animal Ecology, 2011, 80, 505-507.	2.8	6
39	Moving farther and faster. Nature Climate Change, 2011, 1, 396-397.	18.8	6
40	Ecological Connectivity for a Changing Climate. Conservation Biology, 2010, 24, 1686-1689.	4.7	172
41	A framework for community interactions under climate change. Trends in Ecology and Evolution, 2010, 25, 325-331.	8.7	1,076
42	A new method to track seed dispersal and recruitment using15N isotope enrichment. Ecology, 2009, 90, 3516-3525.	3.2	54
43	Can behavior douse the fire of climate warming?. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3647-3648.	7.1	122
44	Landscape connectivity promotes plant biodiversity spillover into non-target habitats. Proceedings of the United States of America, 2009, 106, 9328-9332.	7.1	149
45	Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1939-1948.	2.6	700
46	LATITUDINAL VARIATION IN SUBSPECIFIC DIVERSIFICATION OF BIRDS. Evolution; International Journal of Organic Evolution, 2008, 62, 2775-2788.	2.3	48
47	Modelling longâ€distance seed dispersal in heterogeneous landscapes. Journal of Ecology, 2008, 96, 599-608.	4.0	112
48	Putting the Heat on Tropical Animals. Science, 2008, 320, 1296-1297.	12.6	788
49	COSTS AND BENEFITS OF CAPSAICIN-MEDIATED CONTROL OF GUT RETENTION IN DISPERSERS OF WILD CHILIES. Ecology, 2008, 89, 107-117.	3.2	59
50	The movement ecology and dynamics of plant communities in fragmented landscapes. Proceedings of the United States of America, 2008, 105, 19078-19083.	7.1	150
51	Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6668-6672.	7.1	2,833
52	Evolutionary ecology of pungency in wild chilies. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11808-11811.	7.1	152
53	TESTS OF LANDSCAPE INFLUENCE: NEST PREDATION AND BROOD PARASITISM IN FRAGMENTED ECOSYSTEMS. Ecology, 2006, 87, 759-768.	3.2	100
54	Corridors Increase Plant Species Richness at Large Scales. Science, 2006, 313, 1284-1286.	12.6	273

#	Article	IF	CITATIONS
55	Where did the Chili Get its Spice? Biogeography of Capsaicinoid Production in Ancestral Wild Chili Species. Journal of Chemical Ecology, 2006, 32, 547-564.	1.8	64
56	A field test of the directed deterrence hypothesis in two species of wild chili. Oecologia, 2006, 150, 61-68.	2.0	91
57	Are mountain passes higher in the tropics? janzen's hypothesis revisited. Integrative and Comparative Biology, 2006, 46, 5-17.	2.0	642
58	Ground-foraging palm cockatoos (Probosciger aterrimus) in lowland New Guinea: fruit flesh as a directed deterrent to seed predation?. Journal of Tropical Ecology, 2005, 21, 355-361.	1.1	12
59	Effects of Landscape Corridors on Seed Dispersal by Birds. Science, 2005, 309, 146-148.	12.6	287
60	LOW-QUALITY HABITAT CORRIDORS AS MOVEMENT CONDUITS FOR TWO BUTTERFLY SPECIES. , 2005, 15, 250-257.		115
61	Corridors affect plants, animals, and their interactions in fragmented landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12923-12926.	7.1	449
62	Effects of Dispersal on Survival Probability of Adult Yellow Warblers (Dendroica Petechia). Auk, 2002, 119, 778-789.	1.4	95
63	Fruits, frugivores and the evolutionary arms race. New Phytologist, 2002, 156, 137-139.	7.3	35
64	Positive interactions under nurse-plants: spatial scale, stress gradients and benefactor size. Oecologia, 2001, 127, 425-434.	2.0	266
65	Directed deterrence by capsaicin in chillies. Nature, 2001, 412, 403-404.	27.8	275
66	BREEDING PRODUCTIVITY DOES NOT DECLINE WITH INCREASING FRAGMENTATION IN A WESTERN LANDSCAPE. Ecology, 1998, 79, 2890-2903.	3.2	223