Florian Frugier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7077398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TheMedicago truncatulaCRE1 Cytokinin Receptor Regulates Lateral Root Development and Early Symbiotic Interaction withSinorhizobium meliloti. Plant Cell, 2006, 18, 2680-2693.	6.6	467
2	MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes and Development, 2006, 20, 3084-3088.	5.9	450
3	Genome-Wide <i>Medicago truncatula</i> Small RNA Analysis Revealed Novel MicroRNAs and Isoforms Differentially Regulated in Roots and Nodules. Plant Cell, 2009, 21, 2780-2796.	6.6	270
4	MtCRE1â€dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in <i>Medicago truncatula</i> . Plant Journal, 2011, 65, 622-633.	5.7	257
5	Whole-genome landscape of Medicago truncatula symbiotic genes. Nature Plants, 2018, 4, 1017-1025.	9.3	192
6	EFD Is an ERF Transcription Factor Involved in the Control of Nodule Number and Differentiation in <i>Medicago truncatula</i> . Plant Cell, 2008, 20, 2696-2713.	6.6	172
7	Cytokinin: secret agent of symbiosis. Trends in Plant Science, 2008, 13, 115-120.	8.8	170
8	Flavonoids and Auxin Transport Inhibitors Rescue Symbiotic Nodulation in the <i>Medicago truncatula</i> Cytokinin Perception Mutant <i>cre1</i> . Plant Cell, 2015, 27, 2210-2226.	6.6	142
9	Two Direct Targets of Cytokinin Signaling Regulate Symbiotic Nodulation in <i>Medicago truncatula</i> A Â. Plant Cell, 2012, 24, 3838-3852.	6.6	136
10	DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection. Nature Communications, 2016, 7, 12636.	12.8	135
11	A Laser Dissection-RNAseq Analysis Highlights the Activation of Cytokinin Pathways by Nod Factors in the <i>Medicago truncatula</i> Root Epidermis. Plant Physiology, 2016, 171, 2256-2276.	4.8	128
12	Cytokinins in Symbiotic Nodulation: When, Where, What For?. Trends in Plant Science, 2017, 22, 792-802.	8.8	128
13	How Auxin and Cytokinin Phytohormones Modulate Root Microbe Interactions. Frontiers in Plant Science, 2016, 7, 1240.	3.6	121
14	Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant Journal, 2007, 51, 1-17.	5.7	112
15	Dual involvement of a <i>Medicago truncatula</i> NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. Plant Journal, 2012, 70, 220-230.	5.7	111
16	De Novo Organ Formation from Differentiated Cells: Root Nodule Organogenesis. Science Signaling, 2008, 1, re11.	3.6	110
17	Local and Systemic Regulation of Plant Root System Architecture and Symbiotic Nodulation by a Receptor-Like Kinase. PLoS Genetics, 2014, 10, e1004891.	3.5	101
18	Different Pathways Act Downstream of the CEP Peptide Receptor CRA2 to Regulate Lateral Root and Nodule Development. Plant Physiology, 2016, 171, 2536-2548.	4.8	100

FLORIAN FRUGIER

#	Article	IF	CITATIONS
19	The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically. Nature Communications, 2020, 11, 3167.	12.8	79
20	The small RNA diversity from Medicago truncatularoots under biotic interactions evidences the environmental plasticity of the miRNAome. Genome Biology, 2014, 15, 457.	8.8	78
21	Compact Root Architecture 2 Promotes Root Competence for Nodulation through the miR2111 Systemic Effector. Current Biology, 2020, 30, 1339-1345.e3.	3.9	75
22	A Krüppel-like zinc finger protein is involved in nitrogen-fixing root nodule organogenesis. Genes and Development, 2000, 14, 475-482.	5.9	72
23	The CRE1 Cytokinin Pathway Is Differentially Recruited Depending on Medicago truncatula Root Environments and Negatively Regulates Resistance to a Pathogen. PLoS ONE, 2015, 10, e0116819.	2.5	54
24	Different cytokinin histidine kinase receptors regulate nodule initiation as well as later nodule developmental stages in <i>Medicago truncatula</i> . Plant, Cell and Environment, 2016, 39, 2198-2209.	5.7	49
25	<scp>KNAT</scp> 3/4/5â€like class 2 <scp>KNOX</scp> transcription factors are involved in <i>Medicago truncatula</i> symbiotic nodule organ development. New Phytologist, 2017, 213, 822-837.	7.3	49
26	Bioactive Cytokinins Are Selectively Secreted by <i>Sinorhizobium meliloti</i> Nodulating and Nonnodulating Strains. Molecular Plant-Microbe Interactions, 2013, 26, 1225-1231.	2.6	46
27	Nomenclature for Members of the Two-Component Signaling Pathway of Plants. Plant Physiology, 2013, 161, 1063-1065.	4.8	45
28	DELLA1-Mediated Gibberellin Signaling Regulates Cytokinin-Dependent Symbiotic Nodulation. Plant Physiology, 2017, 175, 1795-1806.	4.8	45
29	The <i>Compact Root Architecture1</i> Gene Regulates Lignification, Flavonoid Production, and Polar Auxin Transport in <i>Medicago truncatula</i> À À. Plant Physiology, 2010, 153, 1597-1607.	4.8	41
30	Unraveling new molecular players involved in the autoregulation of nodulation in <i>Medicago truncatula</i> . Journal of Experimental Botany, 2019, 70, 1407-1417.	4.8	41
31	A CEP Peptide Receptor-Like Kinase Regulates Auxin Biosynthesis and Ethylene Signaling to Coordinate Root Growth and Symbiotic Nodulation in <i>Medicago truncatula</i> . Plant Cell, 2020, 32, 2855-2877.	6.6	41
32	Nitrogen Systemic Signaling: From Symbiotic Nodulation to Root Acquisition. Trends in Plant Science, 2021, 26, 392-406.	8.8	39
33	Independent Regulation of Symbiotic Nodulation by the SUNN Negative and CRA2 Positive Systemic Pathways. Plant Physiology, 2019, 180, 559-570.	4.8	38
34	Nitrate-induced CLE35 signaling peptides inhibit nodulation through the SUNN receptor and miR2111 repression. Plant Physiology, 2021, 185, 1216-1228.	4.8	37
35	CEP receptor signalling controls root system architecture in Arabidopsis and Medicago. New Phytologist, 2020, 226, 1809-1821.	7.3	35
36	Opposing control by transcription factors MYB61 and MYB3 Increases Freezing Tolerance by relieving C-repeat Binding Factor suppression. Plant Physiology, 2016, 172, pp.00051.2016.	4.8	32

FLORIAN FRUGIER

#	Article	IF	CITATIONS
37	Gibberellins negatively regulate the development of Medicago truncatula root system. Scientific Reports, 2019, 9, 2335.	3.3	23
38	Root Development and Endosymbioses: DELLAs Lead the Orchestra. Trends in Plant Science, 2016, 21, 898-900.	8.8	22
39	A Cytokinin Signaling Type-B Response Regulator Transcription Factor Acting in Early Nodulation. Plant Physiology, 2020, 183, 1319-1330.	4.8	19
40	Legume nodule senescence: a coordinated death mechanism between bacteria and plant cells. Advances in Botanical Research, 2020, 94, 181-212.	1.1	16
41	Diversification of cytokinin phosphotransfer signaling genes in Medicago truncatula and other legume genomes. BMC Genomics, 2019, 20, 373.	2.8	14
42	NLP1 binds the CEP1 signalling peptide promoter to repress its expression in response to nitrate. New Phytologist, 2022, 234, 1547-1552.	7.3	12
43	Analyzing Small and Long RNAs in Plant Development Using Non-radioactive In Situ Hybridization. Methods in Molecular Biology, 2013, 959, 303-316.	0.9	9
44	MtNRLK1, a CLAVATA1-like leucine-rich repeat receptor-like kinase upregulated during nodulation in Medicago truncatula. Scientific Reports, 2018, 8, 2046.	3.3	9
45	Cytokinins and the CRE1 receptor influence endogenous gibberellin levels in <i>Medicago truncatula</i> . Plant Signaling and Behavior, 2018, 13, e1428513.	2.4	9
46	A dual legumeâ€rhizobium transcriptome of symbiotic nodule senescence reveals coordinated plant and bacterial responses. Plant, Cell and Environment, 2022, 45, 3100-3121.	5.7	9
47	A CEP Peptide Receptor-Like Kinase Regulates Auxin Biosynthesis and Ethylene Signaling to Coordinate Root Growth and Symbiotic Nodulation in <i>Medicago truncatula</i> . Plant Cell, 2020, 32, 2855-2877.	6.6	8
48	Legume Root Architecture: A Peculiar Root System. , 0, , 239-287.		5
49	Editorial Feature: Meet the PCP Editor—Florian Frugier. Plant and Cell Physiology, 2022, , . 	3.1	0