Ruibao Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7077062/publications.pdf

Version: 2024-02-01

		304743	182427
55	3,277	22	51
papers	citations	h-index	g-index
E.C.	F.C	E.C.	4225
56	56	56	4235
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia. Nature Reviews Cancer, 2005, 5, 172-183.	28.4	896
2	Activation of the c-Abl tyrosine kinase in the stress response to DMA-damaging agents. Nature, 1995, 376, 785-788.	27.8	496
3	Bcr-Abl Efficiently Induces a Myeloproliferative Disease and Production of Excess Interleukin-3 and Granulocyte-Macrophage Colony-Stimulating Factor in Mice: A Novel Model for Chronic Myelogenous Leukemia. Blood, 1998, 92, 3829-3840.	1.4	263
4	WT1 Recruits TET2 to Regulate Its Target Gene Expression and Suppress Leukemia Cell Proliferation. Molecular Cell, 2015, 57, 662-673.	9.7	242
5	Expression of Interferon Consensus Sequence Binding Protein (ICSBP) Is Downregulated in Bcr-Abl-Induced Murine Chronic Myelogenous Leukemia-Like Disease, and Forced Coexpression of ICSBP Inhibits Bcr-Abl-Induced Myeloproliferative Disorder. Molecular and Cellular Biology, 2000, 20, 1149-1161.	2.3	137
6	The NH 2 -Terminal Coiled-Coil Domain and Tyrosine 177 Play Important Roles in Induction of a Myeloproliferative Disease in Mice by Bcr-Abl. Molecular and Cellular Biology, 2001, 21, 840-853.	2.3	111
7	The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia–like disease by bcr/abl. Blood, 2002, 99, 2957-2968.	1.4	105
8	Oncogenic NRAS rapidly and efficiently induces CMML- and AML-like diseases in mice. Blood, 2006, 108, 2349-2357.	1.4	79
9	Oncogenic <i>NRAS, KRAS</i> , and <i>HRAS</i> Exhibit Different Leukemogenic Potentials in Mice. Cancer Research, 2007, 67, 7139-7146.	0.9	76
10	Cooperation of BCR-ABL and AML1/MDS1/EVI1 in blocking myeloid differentiation and rapid induction of an acute myelogenous leukemia. Oncogene, 2001, 20, 8236-8248.	5 . 9	72
11	Palmitoylation of oncogenic NRAS is essential for leukemogenesis. Blood, 2010, 115, 3598-3605.	1.4	72
12	Bcr-Abl with an SH3 Deletion Retains the Ability To Induce a Myeloproliferative Disease in Mice, yet c-Abl Activated by an SH3 Deletion Induces Only Lymphoid Malignancy. Molecular and Cellular Biology, 1999, 19, 6918-6928.	2.3	63
13	Localization of BCR-ABL to F-actin regulates cell adhesion but does not attenuate CML development. Blood, 2003, 102, 2220-2228.	1.4	51
14	Proteasome Inhibition Causes Regression of Leukemia and Abrogates BCR-ABL–Induced Evasion of Apoptosis in Part through Regulation of Forkhead Tumor Suppressors. Cancer Research, 2009, 69, 6546-6555.	0.9	50
15	IRF-4 functions as a tumor suppressor in early B-cell development. Blood, 2008, 112, 3798-3806.	1.4	47
16	Ubp43 regulates BCR-ABL leukemogenesis via the type 1 interferon receptor signaling. Blood, 2007, 110, 305-312.	1.4	45
17	The molecular mechanism of chronic myelogenous leukemia and its therapeutic implications: studies in a murine model. Oncogene, 2002, 21, 8629-8642.	5. 9	38
18	The SH2 domain of Bcr-Abl is not required to induce a murine myeloproliferative disease; however, SH2 signaling influences disease latency and phenotype. Blood, 2001, 97, 277-287.	1.4	32

#	Article	IF	CITATIONS
19	Cooperation between deficiencies of IRF-4 and IRF-8 promotes both myeloid and lymphoid tumorigenesis. Blood, 2010, 116, 2759-2767.	1.4	30
20	Polarized distribution of Bcr-Abl in migrating myeloid cells and co-localization of Bcr-Abl and its target proteins. Oncogene, 1999, 18, 1165-1176.	5.9	29
21	Focal Adhesion Kinase (FAK) Inhibition Synergizes with KRAS G12C Inhibitors in Treating Cancer through the Regulation of the FAK–YAP Signaling. Advanced Science, 2021, 8, e2100250.	11.2	28
22	Effect of Ras Inhibition in Hematopoiesis and BCR/ABL Leukemogenesis. Journal of Hematology and Oncology, 2008, 1, 5.	17.0	22
23	Targeting BRK-Positive Breast Cancers with Small-Molecule Kinase Inhibitors. Cancer Research, 2017, 77, 175-186.	0.9	22
24	Modeling the dosage effect of oncogenes in leukemogenesis. Current Opinion in Hematology, 2004, 11, 25-34.	2.5	20
25	Roles of palmitoylation and the KIKK membrane-targeting motif in leukemogenesis by oncogenic KRAS4A. Journal of Hematology and Oncology, 2015, 8, 132.	17.0	20
26	ARHGEF12 regulates erythropoiesis and is involved in erythroid regeneration after chemotherapy in acute lymphoblastic leukemia patients. Haematologica, 2020, 105, 925-936.	3.5	19
27	Bcr-Abl has a greater intrinsic capacity than v-Abl to induce the neoplastic expansion of myeloid cells. Oncogene, 2000, 19, 6286-6296.	5.9	18
28	A Novel Microtubule Inhibitor Overcomes Multidrug Resistance in Tumors. Cancer Research, 2018, 78, 5949-5957.	0.9	18
29	A dual inhibitor overcomes drug-resistant FLT3-ITD acute myeloid leukemia. Journal of Hematology and Oncology, 2021, 14, 105.	17.0	18
30	GNA13 regulates BCL2 expression and the sensitivity of GCB-DLBCL cells to BCL2 inhibitors in a palmitoylation-dependent manner. Cell Death and Disease, 2021, 12, 54.	6.3	17
31	Application of next-generation sequencing technology to precision medicine in cancer: joint consensus of the Tumor Biomarker Committee of the Chinese Society of Clinical Oncology. Cancer Biology and Medicine, 2019, 16, 189.	3.0	16
32	c-CBL is not required for leukemia induction by Bcr-Abl in mice. Oncogene, 2003, 22, 8852-8860.	5.9	13
33	N-Arachidonoyl Dopamine Inhibits NRAS Neoplastic Transformation by Suppressing Its Plasma Membrane Translocation. Molecular Cancer Therapeutics, 2017, 16, 57-67.	4.1	13
34	Combination therapy of BCR-ABL-positive B cell acute lymphoblastic leukemia by tyrosine kinase inhibitor dasatinib and c-JUN N-terminal kinase inhibition. Journal of Hematology and Oncology, 2020, 13, 80.	17.0	12
35	PTPN2 regulates the activation of KRAS and plays a critical role in proliferation and survival of KRAS-driven cancer cells. Journal of Biological Chemistry, 2020, 295, 18343-18354.	3.4	11
36	Blinatumomab-induced T cell activation at single cell transcriptome resolution. BMC Genomics, 2021, 22, 145.	2.8	11

#	Article	IF	Citations
37	IRF-4 Suppresses BCR/ABL Transformation of Myeloid Cells in a DNA Binding-independent Manner. Journal of Biological Chemistry, 2012, 287, 1770-1778.	3.4	9
38	The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia. Frontiers of Medicine, 2013, 7, 452-461.	3.4	9
39	Low-dose decitabine priming with intermediate-dose cytarabine followed by umbilical cord blood infusion as consolidation therapy for elderly patients with acute myeloid leukemia: a phase II single-arm study. BMC Cancer, 2019, 19, 819.	2.6	8
40	Dissecting the Molecular Mechanism of Chronic Myelogenous Leukemia Using Murine Models. Leukemia and Lymphoma, 2002, 43, 1549-1561.	1.3	6
41	BCR/ABL can promote CD19+ cell growth but not render them long-term stemness. Stem Cell Investigation, 2016, 3, 85-85.	3.0	5
42	Zfyve16 regulates the proliferation of B-lymphoid cells. Frontiers of Medicine, 2018, 12, 559-565.	3.4	4
43	Cooperation of Dnmt3a R878H with Nras G12D promotes leukemogenesis in knock-in mice: a pilot study. BMC Cancer, 2019, 19, 1072.	2.6	4
44	DDB1- and CUL4-associated factor 8 plays a critical role in spermatogenesis. Frontiers of Medicine, 2021, 15, 302-312.	3.4	4
45	IRF8 Impacts Selfâ€Renewal of Hematopoietic Stem Cells by Regulating TLR9 Signaling Pathway of Innate Immune Cells. Advanced Science, 2021, 8, e2101031.	11.2	4
46	IRF4 and IRF8 expression are associated with clinical phenotype and clinico-hematological response to hydroxyurea in essential thrombocythemia. Frontiers of Medicine, 2022, 16, 403-415.	3.4	3
47	IRF8 Regulates Cell Cycle of Hematopoietic Stem Cells. Blood, 2015, 126, 2353-2353.	1.4	3
48	Models of hematopoietic malignancies: chronic myeloid leukemia. Drug Discovery Today: Disease Models, 2006, 3, 183-189.	1.2	2
49	Dominant Negative Effect of Palmitoylation-Deficient NRAS In Suppression of BCR/ABL Leukemogenesis. Blood, 2010, 116, 3157-3157.	1.4	2
50	Overriding BCR/ABL mitotic signal by ICSBP-induced differentiation. Blood, 2003, 102, 4251-4252.	1.4	1
51	Palmitoyl Acyltransferase DHHC9 Is Required for Efficient Induction of Leukemia By Oncogenic NRAS. Blood, 2014, 124, 893-893.	1.4	1
52	The potential of cord blood to replenish young immune cells against cancer. Aging and Cancer, 2021, 2, 36-44.	1.6	0
53	Loss of IRF-4 Exacerbates the CML-Like Phenotype of IRF-8 Knockout Mice Blood, 2004, 104, 2952-2952.	1.4	0
54	IRF-4 Functions as a Tumor Suppressor in Early Stages of B Cell Development Blood, 2007, 110, 154-154.	1.4	0

#	Article	IF	CITATIONS
55	Patient's T Cell Functionality Determines Blinatumomab-Mediated Killing of B-ALL Leukemia Cells. Blood, 2018, 132, 4079-4079.	1.4	0