Andrew Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7076354/publications.pdf

Version: 2024-02-01

34105 19749 14,301 159 52 117 citations h-index g-index papers 163 163 163 21265 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanoparticles in Medicine: Therapeutic Applications and Developments. Clinical Pharmacology and Therapeutics, 2008, 83, 761-769.	4.7	2,156
2	Nanoparticle Delivery of Cancer Drugs. Annual Review of Medicine, 2012, 63, 185-198.	12.2	1,347
3	Self-Assembled Lipidâ^'Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform. ACS Nano, 2008, 2, 1696-1702.	14.6	851
4	Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2586-2591.	7.1	649
5	Clinical Translation of Nanomedicine. Chemical Reviews, 2015, 115, 11147-11190.	47.7	619
6	Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nature Nanotechnology, 2017, 12, 877-882.	31.5	541
7	Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 586-591.	7.1	489
8	Targeted nanoparticles for cancer therapy. Nano Today, 2007, 2, 14-21.	11.9	431
9	Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials, 2011, 32, 9758-9765.	11.4	320
10	Nanoparticles and their applications in cell and molecular biology. Integrative Biology (United) Tj ETQq0 0 0 rgB	Γ /Qverlocł 1.3	₹ 10 Tf 50 382
11	Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1416.	6.1	299
12	Superparamagnetic Iron Oxide Nanoparticle–Aptamer Bioconjugates for Combined Prostate Cancer Imaging and Therapy. ChemMedChem, 2008, 3, 1311-1315.	3.2	297
13	Inflammationâ€Triggered Cancer Immunotherapy by Programmed Delivery of CpG and Antiâ€PD1 Antibody. Advanced Materials, 2016, 28, 8912-8920.	21.0	286
14	Nanotechnology and aptamers: applications in drug delivery. Trends in Biotechnology, 2008, 26, 442-449.	9.3	247
15	Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opinion on Biological Therapy, 2008, 8, 1063-1070.	3.1	225
16	Preclinical Evaluation of Genexol-PM, a Nanoparticle Formulation of Paclitaxel, as a Novel Radiosensitizer for the Treatment of Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2013, 86, 463-468.	0.8	199
17	Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care. ACS Nano, 2018, 12, 24-43.	14.6	192
18	X-Ray Induced Photodynamic Therapy: A Combination of Radiotherapy and Photodynamic Therapy. Theranostics, 2016, 6, 2295-2305.	10.0	171

#	Article	IF	Citations
19	Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials, 2011, 32, 8548-8554.	11.4	164
20	Co-delivery of paclitaxel and cisplatin in poly(2-oxazoline) polymeric micelles: Implications for drug loading, release, pharmacokinetics and outcome of ovarian and breast cancer treatments. Biomaterials, 2019, 192, 1-14.	11.4	158
21	HERâ€2â€Targeted Nanoparticle–Affibody Bioconjugates for Cancer Therapy. ChemMedChem, 2008, 3, 1839-1843.	3.2	143
22	Nanoparticles for cancer imaging: The good, the bad, and the promise. Nano Today, 2013, 8, 454-460.	11.9	140
23	Emerging Nanoâ€∤Microapproaches for Cancer Immunotherapy. Advanced Science, 2019, 6, 1801847.	11.2	136
24	Drug Combination Synergy in Worm-like Polymeric Micelles Improves Treatment Outcome for Small Cell and Non-Small Cell Lung Cancer. ACS Nano, 2018, 12, 2426-2439.	14.6	132
25	A Dual Immunotherapy Nanoparticle Improves Tâ€Cell Activation and Cancer Immunotherapy. Advanced Materials, 2018, 30, e1706098.	21.0	130
26	Revival of the abandoned therapeutic wortmannin by nanoparticle drug delivery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8230-8235.	7.1	128
27	LiGa ₅ O ₈ :Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors. Materials Horizons, 2017, 4, 1092-1101.	12.2	128
28	Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnology, 2016, 7, 11.	3.7	125
29	Folate-Targeted Polymeric Nanoparticle Formulation of Docetaxel Is an Effective Molecularly Targeted Radiosensitizer with Efficacy Dependent on the Timing of Radiotherapy. ACS Nano, 2011, 5, 8990-8998.	14.6	112
30	Nanoparticle drug loading as a design parameter to improve docetaxel pharmacokinetics and efficacy. Biomaterials, 2013, 34, 8424-8429.	11.4	101
31	Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials, 2016, 82, 178-193.	11.4	100
32	ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine, 2010, 5, 361-368.	3.3	95
33	Current Progress of Aptamer-Based Molecular Imaging. Journal of Nuclear Medicine, 2014, 55, 353-356.	5.0	91
34	COVID-19 vaccines for patients with cancer: benefits likely outweigh risks. Journal of Hematology and Oncology, 2021, 14, 38.	17.0	87
35	Effect of particle size on the biodistribution, toxicity, and efficacy of drug-loaded polymeric nanoparticles in chemoradiotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1673-1683.	3.3	78
36	Organ-specific metastases obtained by culturing colorectal cancer cells on tissue-specific decellularized scaffolds. Nature Biomedical Engineering, 2018, 2, 443-452.	22.5	73

#	Article	IF	CITATIONS
37	Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins. Journal of Controlled Release, 2018, 278, 9-23.	9.9	73
38	Polysilsesquioxane nanoparticles for triggered release of cisplatin and effective cancer chemoradiotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 31-38.	3.3	71
39	Accurate Segmentation of CT Male Pelvic Organs via Regression-Based Deformable Models and Multi-Task Random Forests. IEEE Transactions on Medical Imaging, 2016, 35, 1532-1543.	8.9	71
40	Effect of drug release kinetics on nanoparticle therapeutic efficacy and toxicity. Nanoscale, 2014, 6, 2321-2327.	5.6	69
41	Application of liposomal technologies for delivery of platinum analogs in oncology. International Journal of Nanomedicine, 2013, 8, 3309.	6.7	67
42	Improving Cancer Chemoradiotherapy Treatment by Dual Controlled Release of Wortmannin and Docetaxel in Polymeric Nanoparticles. ACS Nano, 2015, 9, 8976-8996.	14.6	67
43	Prostate-specific antigen dynamics predict individual responses to intermittent androgen deprivation. Nature Communications, 2020, 11, 1750.	12.8	67
44	Trispecific natural killer cell nanoengagers for targeted chemoimmunotherapy. Science Advances, 2020, 6, eaba8564.	10.3	66
45	Nanoparticle co-delivery of wortmannin and cisplatin synergistically enhances chemoradiotherapy and reverses platinum resistance in ovarian cancer models. Biomaterials, 2018, 169, 1-10.	11.4	65
46	Racial differences in time from prostate cancer diagnosis to treatment initiation. Cancer, 2013, 119, 2486-2493.	4.1	64
47	CRLX101, a Nanoparticle–Drug Conjugate Containing Camptothecin, Improves Rectal Cancer Chemoradiotherapy by Inhibiting DNA Repair and HIF1î±. Cancer Research, 2017, 77, 112-122.	0.9	60
48	Nanoparticle formulations of histone deacetylase inhibitors for effective chemoradiotherapy in solid tumors. Biomaterials, 2015, 51, 208-215.	11.4	59
49	Bio-nano interface: The impact of biological environment on nanomaterials and their delivery properties. Journal of Controlled Release, 2017, 263, 211-222.	9.9	57
50	Clinical indications for, and the future of, circulating tumor cells. Advanced Drug Delivery Reviews, 2018, 125, 143-150.	13.7	57
51	Local iontophoretic administration of cytotoxic therapies to solid tumors. Science Translational Medicine, 2015, 7, 273ra14.	12.4	56
52	Nanotechnology in Radiation Oncology. Journal of Clinical Oncology, 2014, 32, 2879-2885.	1.6	53
53	Co-delivery of paclitaxel and cisplatin with biocompatible PLGA–PEG nanoparticles enhances chemoradiotherapy in non-small cell lung cancer models. Journal of Materials Chemistry B, 2017, 5, 6049-6057.	5.8	53
54	ld1 is a common downstream target of oncogenic tyrosine kinases in leukemic cells. Blood, 2008, 112, 1981-1992.	1.4	51

#	Article	IF	Citations
55	Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Acta Pharmacologica Sinica, 2020, 41, 970-985.	6.1	49
56	Biotargeted nanomedicines for cancer: six tenets before you begin. Nanomedicine, 2013, 8, 299-308.	3.3	47
57	Tuning Pt–Ir Interactions for NH ₃ Electrocatalysis. ACS Catalysis, 2018, 8, 2508-2518.	11.2	46
58	Enhanced electrocatalytic nitrate reduction by preferentially-oriented (100) PtRh and PtIr alloys: the hidden treasures of the â€~miscibility gap'. Applied Catalysis B: Environmental, 2018, 221, 86-96.	20.2	44
59	Optimizing Advances in Nanoparticle Delivery for Cancer Immunotherapy. Advanced Drug Delivery Reviews, 2019, 144, 3-15.	13.7	44
60	Nanomedicine approaches to improve cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1456.	6.1	39
61	Bespoke Pretargeted Nanoradioimmunotherapy for the Treatment of Non-Hodgkin Lymphoma. ACS Nano, 2018, 12, 1544-1563.	14.6	38
62	A prospective study of the safety and efficacy of liver stereotactic body radiotherapy in patients with and without prior liver-directed therapy. Radiotherapy and Oncology, 2018, 126, 527-533.	0.6	37
63	Phase I/II trial of nano-camptothecin CRLX101 with capecitabine and radiotherapy as neoadjuvant treatment for locally advanced rectal cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 189-195.	3.3	37
64	EPR or no EPR? The billion-dollar question. Science Translational Medicine, 2015, 7, .	12.4	37
65	A Randomized Pilot Trial Comparing Position Emission Tomography (PET)-Guided Dose Escalation Radiotherapy to Conventional Radiotherapy in Chemoradiotherapy Treatment of Locally Advanced Nasopharyngeal Carcinoma. PLoS ONE, 2015, 10, e0124018.	2.5	36
66	Improving DNA double-strand repair inhibitor KU55933 therapeutic index in cancer radiotherapy using nanoparticle drug delivery. Nanoscale, 2015, 7, 20211-20219.	5.6	35
67	Co-delivery of etoposide and cisplatin in dual-drug loaded nanoparticles synergistically improves chemoradiotherapy in non-small cell lung cancer models. Acta Biomaterialia, 2021, 124, 327-335.	8.3	34
68	Nanotechnology Approaches to Improving Cancer Immunotherapy. Advances in Cancer Research, 2018, 139, 35-56.	5.0	33
69	Nanoparticle delivery of chemosensitizers improve chemotherapy efficacy without incurring additional toxicity. Nanoscale, 2015, 7, 2805-2811.	5.6	32
70	Multivalent Binding and Biomimetic Cell Rolling Improves the Sensitivity and Specificity of Circulating Tumor Cell Capture. Clinical Cancer Research, 2018, 24, 2539-2547.	7.0	32
71	Predicting patient-specific response to adaptive therapy in metastatic castration-resistant prostate cancer using prostate-specific antigen dynamics. Neoplasia, 2021, 23, 851-858.	5.3	31
72	Pretargeted delivery of PI3K/mTOR small-molecule inhibitor–loaded nanoparticles for treatment of non-Hodgkin's lymphoma. Science Advances, 2020, 6, eaaz9798.	10.3	30

#	Article	IF	CITATIONS
73	High-Performance Concurrent Chemo-Immuno-Radiotherapy for the Treatment of Hematologic Cancer through Selective High-Affinity Ligand Antibody Mimic-Functionalized Doxorubicin-Encapsulated Nanoparticles. ACS Central Science, 2019, 5, 122-144.	11.3	28
74	Surface engineering for efficient capture of circulating tumor cells in renal cell carcinoma: From nanoscale analysis to clinical application. Biosensors and Bioelectronics, 2020, 162, 112250.	10.1	27
75	Co-delivery of all-trans-retinoic acid enhances the anti-metastasis effect of albumin-bound paclitaxel nanoparticles. Chemical Communications, 2017, 53, 212-215.	4.1	26
76	Improving Local Control in Rectal Cancer: Radiation Sensitizers or Radiation Dose?. Journal of Clinical Oncology, 2010, 28, 1623-1624.	1.6	25
77	Nanomedicine in chemoradiation. Therapeutic Delivery, 2013, 4, 239-250.	2.2	25
78	Improving chemoradiotherapy with nanoparticle therapeutics. Translational Cancer Research, 2013, 2, 320-329.	1.0	25
79	Receipt of Guideline-Concordant Treatment in Elderly Prostate Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2014, 88, 332-338.	0.8	24
80	Preclinical Evaluation of Promitil, a Radiation-Responsive Liposomal Formulation of Mitomycin C Prodrug, in Chemoradiotherapy. International Journal of Radiation Oncology Biology Physics, 2016, 96, 547-555.	0.8	23
81	Integration of biomimicry and nanotechnology for significantly improved detection of circulating tumor cells (CTCs). Advanced Drug Delivery Reviews, 2018, 125, 36-47.	13.7	23
82	Nanoparticle formulation of small DNA molecules, Dbait, improves the sensitivity of hormone-independent prostate cancer to radiotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2261-2271.	3.3	21
83	The Radiobiology of Radiopharmaceuticals. Seminars in Radiation Oncology, 2021, 31, 20-27.	2.2	21
84	Nanoparticle Delivery of miR-122 Inhibits Colorectal Cancer Liver Metastasis. Cancer Research, 2022, 82, 105-113.	0.9	21
85	Nanoparticle delivery of chemotherapy combination regimen improves the therapeutic efficacy in mouse models of lung cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1301-1307.	3.3	19
86	Phase I study of concurrent weekly docetaxel, highâ€dose intensityâ€modulated radiation therapy (IMRT) and androgenâ€deprivation therapy (ADT) for highâ€risk prostate cancer. BJU International, 2012, 110, E721-6.	2.5	17
87	Preparation of Neutronâ€Activatable Holmium Nanoparticles for the Treatment of Ovarian Cancer Metastases. Small, 2012, 8, 997-1000.	10.0	17
88	Nanoparticle Drug Delivery Can Reduce the Hepatotoxicity of Therapeutic Cargo. Small, 2020, 16, 1906360.	10.0	16
89	lmmune Checkpointâ∈Bioengineered Beta Cell Vaccine Reverses Earlyâ€Onset Type 1 Diabetes. Advanced Materials, 2021, 33, e2101253.	21.0	16
90	Neoadjuvant chemotherapy administration and time to cystectomy for muscle-invasive bladder cancer: An evaluation of transitions between academic and community settings. Urologic Oncology: Seminars and Original Investigations, 2015, 33, 386.e1-386.e6.	1.6	15

#	Article	IF	Citations
91	Fitting NTCP models to bladder doses and acute urinary symptoms during post-prostatectomy radiotherapy. Radiation Oncology, 2018, 13, 17.	2.7	15
92	Chemoradiotherapy of Human Tumors: Novel Approaches from Nanomedicine. Current Pharmaceutical Design, 2012, 18, 2830-2837.	1.9	14
93	Cardiovascular Preventive Care and Coordination of Care in Prostate Cancer Survivors: A Multi-Institutional Prospective Study. International Journal of Radiation Oncology Biology Physics, 2019, 103, 112-115.	0.8	14
94	Asymmetric multi-task attention network for prostate bed segmentation in computed tomography images. Medical Image Analysis, 2021, 72, 102116.	11.6	14
95	Bimodal liquid biopsy for cancer immunotherapy based on peptide engineering and nanoscale analysis. Biosensors and Bioelectronics, 2022, 213, 114445.	10.1	14
96	Is Primary Prostate Cancer Treatment Influenced by Likelihood of Extraprostatic Disease? A Surveillance, Epidemiology and End Results Patterns of Care Study. International Journal of Radiation Oncology Biology Physics, 2012, 84, 88-94.	0.8	13
97	Enhancing Combined Immunotherapy and Radiotherapy through Nanomedicine. Bioconjugate Chemistry, 2020, 31, 2668-2678.	3.6	13
98	Patterns of Bladder Preservation TherapyÂUtilization for Muscle-Invasive Bladder Cancer. Bladder Cancer, 2016, 2, 405-413.	0.4	12
99	Nanotechnology in Radiation Oncology. Hematology/Oncology Clinics of North America, 2019, 33, 1071-1093.	2.2	12
100	<i>In Vivo</i> Bioengineering of Beta Cells with Immune Checkpoint Ligand as a Treatment for Early-Onset Type 1 Diabetes Mellitus. ACS Nano, 2021, 15, 19990-20002.	14.6	12
101	Applying nanotherapeutics to improve chemoradiotherapy treatment for cancer. Therapeutic Delivery, 2017, 8, 791-803.	2.2	11
102	Chemo-Radiotherapy of Oligometastases of Colorectal Cancer With Pegylated Liposomal Mitomycin-C Prodrug (Promitil): Mechanistic Basis and Preliminary Clinical Experience. Frontiers in Oncology, 2018, 8, 544.	2.8	11
103	Differential cell responses to nanoparticle docetaxel and small molecule docetaxel at a sub-therapeutic dose range. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 321-328.	3.3	10
104	Technical Note: Fabricating Cerrobend grids with 3D printing for spatially modulated radiation therapy: A feasibility study. Medical Physics, 2015, 42, 6269-6273.	3.0	10
105	Patient-reported quality of life during definitive and postprostatectomy image-guided radiation therapy for prostate cancer. Practical Radiation Oncology, 2017, 7, e117-e124.	2.1	10
106	Biologically Targeted Photoâ€Crosslinkable Nanopatch to Prevent Postsurgical Peritoneal Adhesion. Advanced Science, 2019, 6, 1900809.	11,2	10
107	3D printed drug-loaded implantable devices for intraoperative treatment of cancer. Journal of Controlled Release, 2022, 344, 147-156.	9.9	10
108	Asymmetrical Multi-task Attention U-Net for the Segmentation of Prostate Bed in CT Image. Lecture Notes in Computer Science, 2020, 12264, 470-479.	1.3	9

#	Article	IF	CITATIONS
109	Novel Targeted Aptamer-superparamagnetic Iron Oxide Nanoparticle Bioconjugates for Combined Prostate Cancer Imaging and Therapy. International Journal of Radiation Oncology Biology Physics, 2007, 69, S110-S111.	0.8	8
110	Nanoparticle drug delivery: focusing on the therapeutic cargo. Nanomedicine, 2012, 7, 1463-1465.	3.3	8
111	Roadmap for the development of the University of North Carolina at Chapel Hill Genitourinary OncoLogy Databaseâ€"UNC GOLD. Urologic Oncology: Seminars and Original Investigations, 2014, 32, 32.e1-32.e9.	1.6	8
112	Direct Observation of Early-Stage High-Dose Radiotherapy-Induced Vascular Injury via Basement Membrane-Targeting Nanoparticles. Small, 2015, 11, 6404-6410.	10.0	8
113	Chemoradiation therapy in the management of gastrointestinal malignancies. Future Oncology, 2011, 7, 409-426.	2.4	7
114	Nanotechnology enabling the use of circulating tumor cells (CTCs) as reliable cancer biomarkers. Advanced Drug Delivery Reviews, 2018, 125, 1-2.	13.7	7
115	Immune Checkpoint Ligand Bioengineered Schwann Cells as Antigenâ€Specific Therapy for Experimental Autoimmune Encephalomyelitis. Advanced Materials, 2022, 34, e2107392.	21.0	7
116	Formulation of Diblock Polymeric Nanoparticles through Nanoprecipitation Technique. Journal of Visualized Experiments, 2011 , , .	0.3	6
117	Nanoparticles for Cancer Diagnosis and Therapy. Nanostructure Science and Technology, 2009, , 209-235.	0.1	5
118	Novel immunotherapy approaches for metastatic urothelial and renal cell carcinoma. Asian Journal of Urology, 2016, 3, 268-277.	1.2	4
119	IGF-1 receptor targeted nanoparticles for image-guided therapy of stroma-rich and drug resistant human cancer. , 2016, 9836, .		4
120	Combination Immunotherapy: A Dual Immunotherapy Nanoparticle Improves Tâ€Cell Activation and Cancer Immunotherapy (Adv. Mater. 25/2018). Advanced Materials, 2018, 30, 1870182.	21.0	4
121	Consolidative or palliative whole brain radiation for secondary CNS diffuse large B-Cell lymphoma. Leukemia and Lymphoma, 2021, 62, 68-75.	1.3	4
122	Nanoparticle Formulations of siRNA: The Next Generation of Targeted Therapy for Lymphomas and Leukemias?. EBioMedicine, 2014, 1, 101-102.	6.1	3
123	Underascertainment of Clinically Meaningful Symptoms During Prostate Cancer Radiation Therapy—Does This Vary by Patient Characteristics?. International Journal of Radiation Oncology Biology Physics, 2021, 110, 1122-1128.	0.8	3
124	Personalized drug tablets with 3D printing. Science Translational Medicine, 2015, 7, .	12.4	3
125	Giving failed drugs a fresh chance: a new direction for nanoparticle drug delivery. Expert Review of Medical Devices, 2012, 9, 445-447.	2.8	2
126	Abstract 3899: Nanoparticle reduces hepatotoxicity of cancer treatment by controlled release and Kupffer cell uptake. Cancer Research, 2019, 79, 3899-3899.	0.9	2

#	Article	IF	Citations
127	Phase Ib/II study of neoadjuvant chemoradiotherapy with CRLX101 and capecitabine for locally advanced rectal cancer Journal of Clinical Oncology, 2017, 35, e15144-e15144.	1.6	2
128	Gender-Specific Relationship Between Uric Acid Levels and Prognosis After Cerebral Venous Thrombosis. Current Neurovascular Research, 2019, 15, 292-297.	1.1	2
129	A Tribute to Dr Larissa Lee. Practical Radiation Oncology, 2021, , .	2.1	2
130	Continuous liquid interface production of 3D printed drug-loaded spacers to improve prostate cancer brachytherapy treatment. Acta Biomaterialia, 2022, 148, 163-170.	8.3	2
131	Nanomedicine: Biologically Targeted Photoâ€Crosslinkable Nanopatch to Prevent Postsurgical Peritoneal Adhesion (Adv. Sci. 19/2019). Advanced Science, 2019, 6, 1970117.	11.2	1
132	Shutting down the messenger: Antisense treatment for hypertriglyceridemia. Science Translational Medicine, 2015, 7, .	12.4	1
133	Precision cancer medicine: Hype or hope?. Science Translational Medicine, 2015, 7, .	12.4	1
134	The mRNA "game changer―in gene therapy. Science Translational Medicine, 2016, 8, .	12.4	1
135	Bad plumbing benefits nanoparticles. Science Translational Medicine, 2016, 8, .	12.4	1
136	Radiosensitivity of Breast Cancer Cells Is Dependent on the Organ Microenvironment. Frontiers in Oncology, 2022, 12, .	2.8	1
137	Development of Novel Multifunctional Nanoparticles for Combined Imaging and Targeted Delivery of Chemoradiotherapy. International Journal of Radiation Oncology Biology Physics, 2008, 72, S707.	0.8	0
138	Comparison of User-Directed and Automatic Mapping of the Planned Isocenter to Treatment Space for Prostate IGRT. International Journal of Biomedical Imaging, 2013, 2013, 1-12.	3.9	0
139	Scoring the Recurrence Score in Rectal Cancer. Journal of the National Cancer Institute, 2014, 106, dju295-dju295.	6.3	0
140	Prostate deformation from inflatable rectal probe cover and dosimetric effects in prostate seed implant brachytherapy. Medical Physics, 2016, 43, 6569-6576.	3.0	0
141	Abstract 3954: Prospective evaluation of circulating tumor cells (CTCs) in head and neck cancer patients receiving definitive radiotherapy with a nanotechnology based system. , $2016, , .$		0
142	Dosimetric correlations with urinary quality of life in patients receiving post-prostatectomy radiation therapy. Journal of Radiation Oncology, 2020, 9, 97-102.	0.7	0
143	Quality-of-life Benefits and Harms from Prostate Radiotherapy in Patients with Low-burden Metastatic Prostate Cancer. European Urology, 2021, 79, 198-199.	1.9	О
144	Prognostic and Predictive Clinical and Biological Factors in HPV Malignancies. Seminars in Radiation Oncology, 2021, 31, 309-323.	2.2	0

#	Article	IF	Citations
145	Delivery strategies to overcome tumor immunotherapy resistance. , 2022, , 529-547.		О
146	Oncogenic Tyrosine Kinases Regulate Proliferative and Survival Signals through Activation of Id1 Blood, 2004, 104, 417-417.	1.4	0
147	Abstract 382: Evaluation of folate-targeted ChemoRad nanoparticle as intraperitoneal chemoradiotherapy for ovarian cancer. , 2011, , .		0
148	Biochemical Failure in Prostate Cancer. , 2013, , 807-811.		0
149	Abstract 4517: Differential cellular response to nanoparticle docetaxel and docetaxel at sub-therapeutic dose range, 2013, , .		O
150	Abstract 4522: Nanoparticle chemosensitization, 2013,,.		0
151	Abstract 4530: Nanoparticle formulation of KU55933 as a potent radiosensitizer, 2013, , .		0
152	More than just a fruit: Grapefruit-derived nanovectors deliver cancer drugs. Science Translational Medicine, 2015, 7, .	12.4	0
153	Abstract 1589: Investigation of circulating tumor cells from head and neck cancer patients undergoing radiation therapy: A pilot study. , 2015, , .		0
154	Abstract 5515: Neoadjuvant chemoradiotherapy for rectal cancer with CRLX101, an investigational nanoparticle-drug conjugate with a camptothecin payload. , 2015, , .		0
155	Engineering tumors by rolling sheets. Science Translational Medicine, 2015, 7, .	12.4	O
156	Abstract 4264: Engineered in vitro models of cancer metastasis using decellularized biomatrix. , 2016, , .		0
157	Abstract 5702: Characterization of circulating tumor cells during immune checkpoint inhibition in metastatic renal cell carcinoma and malignant melanoma. , $2018, \ldots$		O
158	Abstract 410: Quantification and downstream analysis of circulating tumor cells isolated using CapioCyteTMliquid biopsy. , 2019, , .		0
159	Immune Checkpoint Ligand Bioengineered Schwann Cells as Antigenâ€Specific Therapy for Experimental Autoimmune Encephalomyelitis (Adv. Mater. 5/2022). Advanced Materials, 2022, 34, .	21.0	0