Dinshaw J Patel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7075546/publications.pdf

Version: 2024-02-01

140 18,890 63 129
papers citations h-index g-index

149 149 20911 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nature Structural and Molecular Biology, 2007, 14, 1025-1040.	8.2	1,288
2	Human telomere, oncogenic promoter and 5'-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Research, 2007, 35, 7429-7455.	14.5	812
3	Cyclic [G(2′,5′)pA(3′,5′)p] Is the Metazoan Second Messenger Produced by DNA-Activated Cyclic GM Synthase. Cell, 2013, 153, 1094-1107.	IP-AMP 28.9	795
4	DNA methylation pathways and their crosstalk with histone methylation. Nature Reviews Molecular Cell Biology, 2015, 16, 519-532.	37.0	779
5	Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nature Structural and Molecular Biology, 2014, 21, 64-72.	8.2	690
6	Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature, 2004, 429, 318-322.	27.8	647
7	Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature, 2008, 456, 921-926.	27.8	512
8	Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature, 2009, 461, 754-761.	27.8	483
9	Structure of the guide-strand-containing argonaute silencing complex. Nature, 2008, 456, 209-213.	27.8	481
10	PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nature Structural and Molecular Biology, 2009, 16, 304-311.	8.2	451
11	Dual Binding of Chromomethylase Domains to H3K9me2-Containing Nucleosomes Directs DNA Methylation in Plants. Cell, 2012, 151, 167-180.	28.9	446
12	Histone chaperone networks shaping chromatin function. Nature Reviews Molecular Cell Biology, 2017, 18, 141-158.	37.0	401
13	The evolutionary journey of Argonaute proteins. Nature Structural and Molecular Biology, 2014, 21, 743-753.	8.2	400
14	DNA-guided DNA interference by a prokaryotic Argonaute. Nature, 2014, 507, 258-261.	27.8	373
15	Structure of DNMT1-DNA Complex Reveals a Role for Autoinhibition in Maintenance DNA Methylation. Science, 2011, 331, 1036-1040.	12.6	363
16	The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier–Gorlin syndrome. Nature, 2012, 484, 115-119.	27.8	314
17	Structure of yeast Argonaute with guide RNA. Nature, 2012, 486, 368-374.	27.8	314
18	Readout of Epigenetic Modifications. Annual Review of Biochemistry, 2013, 82, 81-118.	11.1	285

#	Article	IF	CITATIONS
19	Yng1 PHD Finger Binding to H3 Trimethylated at K4 Promotes NuA3 HAT Activity at K14 of H3 and Transcription at a Subset of Targeted ORFs. Molecular Cell, 2006, 24, 785-796.	9.7	283
20	Structure-Based Mechanistic Insights into DNMT1-Mediated Maintenance DNA Methylation. Science, 2012, 335, 709-712.	12.6	283
21	SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature, 2014, 507, 124-128.	27.8	271
22	A Poised Chromatin Platform for TGF-Î ² Access to Master Regulators. Cell, 2011, 147, 1511-1524.	28.9	251
23	Molecular Mechanism of Action of Plant DRM De Novo DNA Methyltransferases. Cell, 2014, 157, 1050-1060.	28.9	245
24	Uridylation by TUT4 and TUT7 Marks mRNA for Degradation. Cell, 2014, 159, 1365-1376.	28.9	243
25	<i>RNA-Puzzles</i> : A CASP-like evaluation of RNA three-dimensional structure prediction. Rna, 2012, 18, 610-625.	3.5	241
26	Polycomb-like proteins link the PRC2 complex to CpG islands. Nature, 2017, 549, 287-291.	27.8	238
27	An H3K36 Methylation-Engaging Tudor Motif of Polycomb-like Proteins Mediates PRC2 Complex Targeting. Molecular Cell, 2013, 49, 571-582.	9.7	221
28	DAXX envelops a histone H3.3–H4 dimer for H3.3-specific recognition. Nature, 2012, 491, 560-565.	27.8	220
29	Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Nature Communications, 2017, 8, 750.	12.8	202
30	Structure-based cleavage mechanism of <i>Thermus thermophilus</i> Argonaute DNA guide strand-mediated DNA target cleavage. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 652-657.	7.1	194
31	A unique binding mode enables MCM2 to chaperone histones H3–H4 at replication forks. Nature Structural and Molecular Biology, 2015, 22, 618-626.	8.2	192
32	Mechanism of DNA Methylation-Directed Histone Methylation by KRYPTONITE. Molecular Cell, 2014, 55, 495-504.	9.7	186
33	Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Research, 2016, 26, 901-913.	12.0	180
34	H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex. Nature, 2016, 534, 714-718.	27.8	172
35	PHD Finger Recognition of Unmodified Histone H3R2 Links UHRF1 to Regulation of Euchromatic Gene Expression. Molecular Cell, 2011, 43, 275-284.	9.7	170
36	Crystal structure reveals specific recognition of a G-quadruplex RNA by a \hat{I}^2 -turn in the RGG motif of FMRP. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5391-400.	7.1	168

#	Article	IF	CITATIONS
37	RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme. Rna, 2017, 23, 655-672.	3.5	158
38	Cryo-EM Structures Reveal Mechanism and Inhibition of DNA Targeting by a CRISPR-Cas Surveillance Complex. Cell, 2017, 171, 414-426.e12.	28.9	158
39	Inhibition Mechanism of an Anti-CRISPR Suppressor AcrllA4 Targeting SpyCas9. Molecular Cell, 2017, 67, 117-127.e5.	9.7	143
40	Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression. Nature Communications, 2019, 10, 2261.	12.8	134
41	Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11946-11955.	7.1	129
42	Cutoff Suppresses RNA Polymerase II Termination to Ensure Expression of piRNA Precursors. Molecular Cell, 2016, 63, 97-109.	9.7	116
43	A Phosphate-Binding Pocket within the Platform-PAZ-Connector Helix Cassette of Human Dicer. Molecular Cell, 2014, 53, 606-616.	9.7	111
44	N6-Methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell, 2021, 39, 958-972.e8.	16.8	108
45	RNA-Puzzles Round IV: 3D structure predictions of four ribozymes and two aptamers. Rna, 2020, 26, 982-995.	3.5	100
46	c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry–related pockets. Nature Chemical Biology, 2014, 10, 780-786.	8.0	98
47	Aub and Ago3 Are Recruited to Nuage through Two Mechanisms to Form a Ping-Pong Complex Assembled by Krimper. Molecular Cell, 2015, 59, 564-575.	9.7	98
48	<scp>TUT</scp> 7 controls the fate of precursor micro <scp>RNA</scp> s by using three different uridylation mechanisms. EMBO Journal, 2015, 34, 1801-1815.	7.8	97
49	Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia. Nature Communications, 2019, 10, 2691.	12.8	93
50	Structural basis for piRNA 2'-O-methylated 3'-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 903-910.	7.1	91
51	Eukaryote-Specific Insertion Elements Control Human ARGONAUTE Slicer Activity. Cell Reports, 2013, 3, 1893-1900.	6.4	91
52	CRISPR-Cas III-A Csm6 CARF Domain Is a Ring Nuclease Triggering Stepwise cA4 Cleavage with ApA>p Formation Terminating RNase Activity. Molecular Cell, 2019, 75, 944-956.e6.	9.7	90
53	REC114 Partner ANKRD31 Controls Number, Timing, and Location of Meiotic DNA Breaks. Molecular Cell, 2019, 74, 1053-1068.e8.	9.7	89
54	Binding-Pocket and Lid-Region Substitutions Render Human STING Sensitive to the Species-Specific Drug DMXAA. Cell Reports, 2014, 8, 1668-1676.	6.4	87

#	Article	IF	CITATIONS
55	Adenylation of Maternally Inherited MicroRNAs by Wispy. Molecular Cell, 2014, 56, 696-707.	9.7	87
56	Structural Basis for Molecular Discrimination by a 3′,3′-cGAMP Sensing Riboswitch. Cell Reports, 2015, 11, 1-12.	6.4	87
57	Molecular basis of nucleosomal H3K36 methylation by NSD methyltransferases. Nature, 2021, 590, 498-503.	27.8	85
58	In-line alignment and Mg2+ coordination at the cleavage site of the env22 twister ribozyme. Nature Communications, 2014, 5, 5534.	12.8	84
59	Structural and mechanistic insights into ATRX-dependent and -independent functions of the histone chaperone DAXX. Nature Communications, 2017, 8, 1193.	12.8	84
60	A molecular threading mechanism underlies Jumonji lysine demethylase KDM2A regulation of methylated H3K36. Genes and Development, 2014, 28, 1758-1771.	5.9	83
61	A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018754.	5.5	79
62	The PZP Domain of AF10 Senses Unmodified H3K27 to Regulate DOT1L-Mediated Methylation of H3K79. Molecular Cell, 2015, 60, 319-327.	9.7	78
63	Pistol ribozyme adopts a pseudoknot fold facilitating site-specific in-line cleavage. Nature Chemical Biology, 2016, 12, 702-708.	8.0	78
64	Type III-A CRISPR-Cas Csm Complexes: Assembly, Periodic RNA Cleavage, DNase Activity Regulation, and Autoimmunity. Molecular Cell, 2019, 73, 264-277.e5.	9.7	77
65	A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity. Science, 2020, 369, 54-59.	12.6	77
66	The Card1 nuclease provides defence during typeÂIII CRISPR immunity. Nature, 2021, 590, 624-629.	27.8	76
67	The nascent RNA binding complex SFiNX licenses piRNA-guided heterochromatin formation. Nature Structural and Molecular Biology, 2019, 26, 720-731.	8.2	75
68	Structure and function of the bacterial decapping enzyme NudC. Nature Chemical Biology, 2016, 12, 730-734.	8.0	74
69	DNA-driven condensation assembles the meiotic DNA break machinery. Nature, 2021, 592, 144-149.	27.8	71
70	Arabidopsis Accelerated Cell Death 11, ACD11, Is a Ceramide-1-Phosphate Transfer Protein and Intermediary Regulator of Phytoceramide Levels. Cell Reports, 2014, 6, 388-399.	6.4	69
71	Solution Structure of the Aminofluorene [AF]-Intercalated Conformer of thesyn-[AF]-C8-dG Adduct Opposite dC in a DNA Duplexâ€. Biochemistry, 1998, 37, 81-94.	2.5	68
72	<i>In vitro</i> antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19. Journal of Antimicrobial Chemotherapy, 2021, 76, 1874-1885.	3.0	65

#	Article	IF	CITATIONS
73	TRF2 binds branched DNA to safeguard telomere integrity. Nature Structural and Molecular Biology, 2017, 24, 734-742.	8.2	63
74	DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation. Nature Communications, 2021, 12, 2490.	12.8	63
75	Solution Structure of the Aminofluorene [AF]-External Conformer of theanti-[AF]-C8-dG Adduct Opposite dC in a DNA Duplexâ€. Biochemistry, 1998, 37, 95-106.	2.5	62
76	Direct readout of heterochromatic H3K9me3 regulates DNMT1-mediated maintenance DNA methylation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18439-18447.	7.1	62
77	Structure-based mechanistic insights into catalysis by small self-cleaving ribozymes. Current Opinion in Chemical Biology, 2017, 41, 71-83.	6.1	56
78	Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nature Reviews Molecular Cell Biology, 2021, 22, 563-579.	37.0	56
79	Solution Conformation of theN-(Deoxyguanosin-8-yl)-1-aminopyrene ([AP]dG) Adduct Opposite dC in a DNA Duplexâ€. Biochemistry, 1996, 35, 12659-12670.	2.5	55
80	A Miniâ€Twister Variant and Impact of Residues/Cations on the Phosphodiester Cleavage of this Ribozyme Class. Angewandte Chemie - International Edition, 2015, 54, 15128-15133.	13.8	51
81	Structural and Dynamic Basis for Low-Affinity, High-Selectivity Binding of L-Glutamine by the Glutamine Riboswitch. Cell Reports, 2015, 13, 1800-1813.	6.4	50
82	Structure-function studies of nucleocytoplasmic transport of retroviral genomic RNA by mRNA export factor TAP. Nature Structural and Molecular Biology, 2011, 18, 990-998.	8.2	47
83	Accommodation of Helical Imperfections in Rhodobacter sphaeroides Argonaute Ternary Complexes with Guide RNA and Target DNA. Cell Reports, 2018, 24, 453-462.	6.4	47
84	Structureâ€"function studies of histone H3/H4 tetramer maintenance during transcription by chaperone Spt2. Genes and Development, 2015, 29, 1326-1340.	5.9	46
85	The CENP-T/-W complex is a binding partner of the histone chaperone FACT. Genes and Development, 2016, 30, 1313-1326.	5.9	45
86	Structural basis underlying CAC RNA recognition by the RRM domain of dimeric RNA-binding protein RBPMS. Quarterly Reviews of Biophysics, 2016, 49, e1.	5.7	42
87	Mouse MORC3 is a GHKL ATPase that localizes to H3K4me3 marked chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5108-16.	7.1	41
88	Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture. Communications Biology, 2022, 5, 154.	4.4	40
89	Second Messenger cA4 Formation within the Composite Csm1 Palm Pocket of Type III-A CRISPR-Cas Csm Complex and Its Release Path. Molecular Cell, 2019, 75, 933-943.e6.	9.7	37
90	Control of a neuronal morphology program by an RNA-binding zinc finger protein, Unkempt. Genes and Development, 2015, 29, 501-512.	5.9	35

#	Article	IF	CITATIONS
91	Integrative analysis reveals unique structural and functional features of the Smc5/6 complex. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	35
92	Structural basis for self-cleavage prevention by tag:anti-tag pairing complementarity in type VI Cas13 CRISPR systems. Molecular Cell, 2021, 81, 1100-1115.e5.	9.7	34
93	DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network. Molecular Cell, 2021, 81, 2533-2548.e9.	9.7	31
94	Structural basis of phosphatidylcholine recognition by the C2–domain of cytosolic phospholipase A2α. ELife, 2019, 8, .	6.0	31
95	Global RNA Fold and Molecular Recognition for a pfl Riboswitch Bound to ZMP, a Master Regulator of One-Carbon Metabolism. Structure, 2015, 23, 1375-1381.	3.3	30
96	Sphingolipid transfer proteins defined by the GLTP-fold. Quarterly Reviews of Biophysics, 2015, 48, 281-322.	5.7	30
97	Structure-based insights into self-cleavage by a four-way junctional twister-sister ribozyme. Nature Communications, 2017, 8, 1180.	12.8	30
98	Structure–function insights into the initial step of DNA integration by a CRISPR–Cas–Transposon complex. Cell Research, 2020, 30, 182-184.	12.0	30
99	Atomâ€Specific Mutagenesis Reveals Structural and Catalytic Roles for an Activeâ€Site Adenosine and Hydrated Mg ²⁺ in Pistol Ribozymes. Angewandte Chemie - International Edition, 2017, 56, 15954-15958.	13.8	29
100	Structure/cleavage-based insights into helical perturbations at bulge sites within T. thermophilus Argonaute silencing complexes. Nucleic Acids Research, 2017, 45, 9149-9163.	14.5	29
101	Glycolipid Acquisition by Human Glycolipid Transfer Protein Dramatically Alters Intrinsic Tryptophan Fluorescence. Journal of Biological Chemistry, 2009, 284, 13620-13628.	3.4	28
102	Hatchet ribozyme structure and implications for cleavage mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10783-10791.	7.1	28
103	Structural biology-based insights into combinatorial readout and crosstalk among epigenetic marks. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 719-727.	1.9	27
104	Structural basis underlying viral hijacking of a histone chaperone complex. Nature Communications, 2016, 7, 12707.	12.8	27
105	Cryo-EM structure of DNA-bound Smc5/6 reveals DNA clamping enabled by multi-subunit conformational changes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27
106	Crucial Roles of Two Hydrated Mg 2+ Ions in Reaction Catalysis of the Pistol Ribozyme. Angewandte Chemie - International Edition, 2020, 59, 2837-2843.	13.8	24
107	Recognition of distinct RNA motifs by the clustered CCCH zinc fingers of neuronal protein Unkempt. Nature Structural and Molecular Biology, 2016, 23, 16-23.	8.2	23
108	Molecular principles of Piwi-mediated cotranscriptional silencing through the dimeric SFiNX complex. Genes and Development, 2021, 35, 392-409.	5.9	23

#	Article	IF	Citations
109	Phosphatidylserine Stimulates Ceramide 1-Phosphate (C1P) Intermembrane Transfer by C1P Transfer Proteins. Journal of Biological Chemistry, 2017, 292, 2531-2541.	3.4	20
110	Transcriptional elongation factor Paf1 core complex adopts a spirally wrapped solenoidal topology. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9998-10003.	7.1	20
111	Structural Basis for the Unique Multivalent Readout of Unmodified H3 Tail by Arabidopsis ORC1b BAH-PHD Cassette. Structure, 2016, 24, 486-494.	3.3	19
112	How \hat{l}_{\pm} -Helical Motifs Form Functionally Diverse Lipid-Binding Compartments. Annual Review of Biochemistry, 2017, 86, 609-636.	11.1	19
113	CasX: a new and small CRISPR gene-editing protein. Cell Research, 2019, 29, 345-346.	12.0	19
114	Panoramix SUMOylation on chromatin connects the piRNA pathway to the cellular heterochromatin machinery. Nature Structural and Molecular Biology, 2022, 29, 130-142.	8.2	19
115	Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis. PLoS Genetics, 2020, 16, e1008422.	3.5	17
116	Structures and single-molecule analysis of bacterial motor nuclease AdnAB illuminate the mechanism of DNA double-strand break resection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24507-24516.	7.1	16
117	Molecular mechanisms of assembly and TRIP13-mediated remodeling of the human Shieldin complex. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2024512118.	7.1	16
118	The transcriptional regulator HDP1 controls expansion of the inner membrane complex during early sexual differentiation of malaria parasites. Nature Microbiology, 2022, 7, 289-299.	13.3	15
119	Distinct structural bases for sequence-specific DNA binding by mammalian BEN domain proteins. Genes and Development, 2022, 36, 225-240.	5.9	13
120	Binding of guide piRNA triggers methylation of the unstructured N-terminal region of Aub leading to assembly of the piRNA amplification complex. Nature Communications, 2021, 12, 4061.	12.8	11
121	Structural insights into DNMT5-mediated ATP-dependent high-fidelity epigenome maintenance. Molecular Cell, 2022, 82, 1186-1198.e6.	9.7	11
122	Structural analyses of 4-phosphate adaptor protein 2 yield mechanistic insights into sphingolipid recognition by the glycolipid transfer protein family. Journal of Biological Chemistry, 2018, 293, 16709-16723.	3.4	9
123	Structure-function analysis of microRNA 3′-end trimming by Nibbler. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30370-30379.	7.1	9
124	Ceramide-1-phosphate transfer protein (CPTP) regulation by phosphoinositides. Journal of Biological Chemistry, 2021, 296, 100600.	3.4	8
125	V-cGAPs: attenuators of 3′3′-cGAMP signaling. Cell Research, 2015, 25, 529-530.	12.0	5
126	New CRISPR-Cas systems discovered. Cell Research, 2017, 27, 313-314.	12.0	4

#	Article	IF	CITATIONS
127	Atomâ€Specific Mutagenesis Reveals Structural and Catalytic Roles for an Activeâ€Site Adenosine and Hydrated Mg ²⁺ in Pistol Ribozymes. Angewandte Chemie, 2017, 129, 16170-16174.	2.0	4
128	Oligomeric quaternary structure of <i>Escherichia coli</i> and <i>Mycobacterium smegmatis</i> Lhr helicases is nucleated by a novel C-terminal domain composed of five winged-helix modules. Nucleic Acids Research, 2021, 49, 3876-3887.	14.5	4
129	Ceramide-1-Phosphate Transfer Protein Promotes Sphingolipid Reorientation Needed for Binding during Membrane Interaction. Journal of Lipid Research, 2021, , 100151.	4.2	4
130	Structure–activity relationships at a nucleobase-stacking tryptophan required for chemomechanical coupling in the DNA resecting motor-nuclease AdnAB. Nucleic Acids Research, 2022, 50, 952-961.	14.5	2
131	Complete pairing not needed. Science, 2014, 346, 542-543.	12.6	1
132	Keeping innate immune response in check: when cGAS meets the nucleosome. Cell Research, 2020, 30, 1055-1056.	12.0	1
133	Purification of Cytosolic Phospholipase A2α C2-domain after Expression in Soluble Form in Escherichia coli. Bio-protocol, 2021, 11, e3906.	0.4	0
134	What makes Phosphatidylserine a Novel Regulator of Ceramideâ€1â€Phosphate Transfer Proteins?. FASEB Journal, 2015, 29, 886.23.	0.5	0
135	Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis. , 2020, 16, e1008422.		0
136	Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis., 2020, 16, e1008422.		0
137	Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis. , 2020, 16, e1008422.		0
138	Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis., 2020, 16, e1008422.		0
139	Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis., 2020, 16, e1008422.		0
140	Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis., 2020, 16, e1008422.		0