Olga R Ilkayeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7075209/publications.pdf

Version: 2024-02-01

113 papers 19,163 citations

41344 49 h-index 24258 110 g-index

117 all docs

117 docs citations

times ranked

117

27560 citing authors

#	Article	IF	CITATIONS
1	Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science, 2013, 341, 1241214.	12.6	3,006
2	A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metabolism, 2009, 9, 311-326.	16.2	2,597
3	Mitochondrial Overload and Incomplete Fatty Acid Oxidation Contribute to Skeletal Muscle Insulin Resistance. Cell Metabolism, 2008, 7, 45-56.	16.2	1,618
4	SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 2010, 464, 121-125.	27.8	1,388
5	Lysine Glutarylation Is a Protein Posttranslational Modification Regulated by SIRT5. Cell Metabolism, 2014, 19, 605-617.	16.2	647
6	SIRT5 Regulates the Mitochondrial Lysine Succinylome and Metabolic Networks. Cell Metabolism, 2013, 18, 920-933.	16.2	549
7	Circadian Clock NAD ⁺ Cycle Drives Mitochondrial Oxidative Metabolism in Mice. Science, 2013, 342, 1243417.	12.6	525
8	Sialylated Milk Oligosaccharides Promote Microbiota-Dependent Growth in Models of Infant Undernutrition. Cell, 2016, 164, 859-871.	28.9	497
9	Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation, 2016, 133, 2038-2049.	1.6	390
10	N6 -Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection. Cell Host and Microbe, 2016, 20, 654-665.	11.0	370
11	BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature, 2019, 572, 614-619.	27.8	332
12	Muscle-Specific Deletion of Carnitine Acetyltransferase Compromises Glucose Tolerance and Metabolic Flexibility. Cell Metabolism, 2012, 15, 764-777.	16.2	307
13	Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science, 2019, 365, .	12.6	305
14	The Gut Microbiota Modulates Energy Metabolism in the Hibernating Brown Bear Ursus arctos. Cell Reports, 2016, 14, 1655-1661.	6.4	290
15	Carnitine Insufficiency Caused by Aging and Overnutrition Compromises Mitochondrial Performance and Metabolic Control. Journal of Biological Chemistry, 2009, 284, 22840-22852.	3.4	271
16	Lipids Reprogram Metabolism to Become a Major Carbon Source for Histone Acetylation. Cell Reports, 2016, 17, 1463-1472.	6.4	266
17	SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion. Cell Metabolism, 2017, 25, 838-855.e15.	16.2	259
18	Macrophage Metabolism of Apoptotic Cell-Derived Arginine Promotes Continual Efferocytosis and Resolution of Injury. Cell Metabolism, 2020, 31, 518-533.e10.	16.2	235

#	Article	lF	Citations
19	Energy Metabolic Reprogramming in the Hypertrophied and Early Stage Failing Heart. Circulation: Heart Failure, 2014, 7, 1022-1031.	3.9	233
20	Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. Journal of Clinical Investigation, 2017, 127, 4059-4074.	8.2	233
21	The BCKDH Kinase and Phosphatase Integrate BCAA and Lipid Metabolism via Regulation of ATP-Citrate Lyase. Cell Metabolism, 2018, 27, 1281-1293.e7.	16.2	222
22	Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Molecular Metabolism, 2016, 5, 538-551.	6.5	210
23	A Class of Reactive Acyl-CoA Species Reveals the Non-enzymatic Origins of Protein Acylation. Cell Metabolism, 2017, 25, 823-837.e8.	16.2	205
24	A Pyruvate Cycling Pathway Involving Cytosolic NADP-dependent Isocitrate Dehydrogenase Regulates Glucose-stimulated Insulin Secretion. Journal of Biological Chemistry, 2006, 281, 30593-30602.	3.4	204
25	Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling. PLoS Genetics, 2008, 4, e1000034.	3.5	188
26	Metabolomic Profiling Identifies Novel Circulating Biomarkers of Mitochondrial Dysfunction Differentially Elevated in Heart Failure With Preserved Versus Reduced Ejection Fraction: Evidence for Shared Metabolic Impairments in Clinical Heart Failure. Journal of the American Heart Association, 2016, 5, .	3.7	178
27	Neuronal CRTC-1 Governs Systemic Mitochondrial Metabolism and Lifespan via a Catecholamine Signal. Cell, 2015, 160, 842-855.	28.9	175
28	Prognostic Implications of Long-Chain Acylcarnitines in Heart Failure and Reversibility With Mechanical CirculatoryÂSupport. Journal of the American College of Cardiology, 2016, 67, 291-299.	2.8	143
29	Dietary Sugars Alter Hepatic Fatty Acid Oxidation via Transcriptional and Post-translational Modifications of Mitochondrial Proteins. Cell Metabolism, 2019, 30, 735-753.e4.	16.2	136
30	Modification of messenger RNA by $2\hat{a} \in ^2$ -O-methylation regulates gene expression in vivo. Nature Communications, 2019, 10, 3401.	12.8	134
31	Prior Dietary Practices and Connections to a Human Gut Microbial Metacommunity Alter Responses to Diet Interventions. Cell Host and Microbe, 2017, 21, 84-96.	11.0	129
32	Compensatory Responses to Pyruvate Carboxylase Suppression in Islet \hat{l}^2 -Cells. Journal of Biological Chemistry, 2006, 281, 22342-22351.	3.4	124
33	Brain Insulin Lowers Circulating BCAA Levels by Inducing Hepatic BCAA Catabolism. Cell Metabolism, 2014, 20, 898-909.	16.2	124
34	Effect of Roux-en-Y Gastric Bypass and Laparoscopic Adjustable Gastric Banding on Branched-Chain Amino Acid Metabolism. Diabetes, 2013, 62, 2757-2761.	0.6	108
35	Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans. Diabetologia, 2015, 58, 2324-2335.	6.3	103
36	Metabolic profiling of PPARÎ \pm (sup> \hat{a} '/ \hat{a} ''(sup> mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation. FASEB Journal, 2009, 23, 586-604.	0.5	101

#	Article	IF	Citations
37	<i>N ⁶ -methyladenosine is required for the hypoxic stabilization of specific mRNAs. Rna, 2017, 23, 1444-1455.	3.5	92
38	Obesity and lipid stress inhibit carnitine acetyltransferase activity. Journal of Lipid Research, 2014, 55, 635-644.	4.2	80
39	Carnitine Acetyltransferase Mitigates Metabolic Inertia and Muscle Fatigue during Exercise. Cell Metabolism, 2015, 22, 65-76.	16.2	78
40	The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins. Cell Reports, 2016, 14, 243-254.	6.4	77
41	BMI, RQ, Diabetes, and Sex Affect the Relationships Between Amino Acids and Clamp Measures of Insulin Action in Humans. Diabetes, 2014, 63, 791-800.	0.6	76
42	Maternal BMI and Glycemia Impact the Fetal Metabolome. Diabetes Care, 2017, 40, 902-910.	8.6	74
43	Nutritional modulation of heart failure in mitochondrial pyruvate carrier–deficient mice. Nature Metabolism, 2020, 2, 1232-1247.	11.9	74
44	Associations of maternal BMI and insulin resistance with the maternal metabolome and newborn outcomes. Diabetologia, 2017, 60, 518-530.	6.3	71
45	SIRT6 Promotes Hepatic Beta-Oxidation via Activation of PPARα. Cell Reports, 2019, 29, 4127-4143.e8.	6.4	68
46	Acyl-CoA thioesterase-2 facilitates mitochondrial fatty acid oxidation in the liver. Journal of Lipid Research, 2014, 55, 2458-2470.	4.2	64
47	Cardiomyocyte glucagon receptor signaling modulates outcomes in mice with experimental myocardial infarction. Molecular Metabolism, 2015, 4, 132-143.	6.5	54
48	Effects of a gut pathobiont in a gnotobiotic mouse model of childhood undernutrition. Science Translational Medicine, 2016, 8, 366ra164.	12.4	54
49	Metabolomic analysis reveals altered skeletal muscle amino acid and fatty acid handling in obese humans. Obesity, 2015, 23, 981-988.	3.0	53
50	Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth. Diabetes, 2016, 65, 2039-2050.	0.6	49
51	Muscle-Liver Trafficking of BCAA-Derived Nitrogen Underlies Obesity-Related Glycine Depletion. Cell Reports, 2020, 33, 108375.	6.4	49
52	Long-chain Acylcarnitines Reduce Lung Function by Inhibiting Pulmonary Surfactant. Journal of Biological Chemistry, 2015, 290, 23897-23904.	3.4	46
53	Branched-chain \hat{l} ±-ketoacids are preferentially reaminated and activate protein synthesis in the heart. Nature Communications, 2021, 12, 1680.	12.8	45
54	Maternal metabolites during pregnancy are associated with newborn outcomes and hyperinsulinaemia across ancestries. Diabetologia, 2019, 62, 473-484.	6.3	43

#	Article	IF	CITATIONS
55	Dietary branched-chain amino acid restriction alters fuel selection and reduces triglyceride stores in hearts of Zucker fatty rats. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E216-E223.	3.5	43
56	Feeding diversified protein sources exacerbates hepatic insulin resistance via increased gut microbial branched-chain fatty acids and mTORC1 signaling in obese mice. Nature Communications, 2021, 12, 3377.	12.8	42
57	Metabolomic Profiling Reveals a Role for Caspase-2 in Lipoapoptosis. Journal of Biological Chemistry, 2013, 288, 14463-14475.	3.4	41
58	HIF-1 Alpha Regulates the Response of Primary Sarcomas to Radiation Therapy through a Cell Autonomous Mechanism. Radiation Research, 2015, 183, 594.	1.5	41
59	Phosphoproteomic Profiling of Human Myocardial Tissues Distinguishes Ischemic from Non-Ischemic End Stage Heart Failure. PLoS ONE, 2014, 9, e104157.	2.5	39
60	Respiratory Phenomics across Multiple Models of Protein Hyperacylation in Cardiac Mitochondria Reveals a Marginal Impact on Bioenergetics. Cell Reports, 2019, 26, 1557-1572.e8.	6.4	39
61	Targeted Metabolomics Demonstrates Distinct and Overlapping Maternal Metabolites Associated With BMI, Glucose, and Insulin Sensitivity During Pregnancy Across Four Ancestry Groups. Diabetes Care, 2017, 40, 911-919.	8.6	38
62	Temporal dynamics of liver mitochondrial protein acetylation and succinylation and metabolites due to high fat diet and/or excess glucose or fructose. PLoS ONE, 2018, 13, e0208973.	2.5	38
63	Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data. BMC Bioinformatics, 2017, 18, 84.	2.6	37
64	FIT2 is an acyl–coenzyme A diphosphatase crucial for endoplasmic reticulum homeostasis. Journal of Cell Biology, 2020, 219, .	5.2	37
65	ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via \hat{l}_{\pm} -ketoglutarate. PLoS Genetics, 2015, 11, e1005599.	3.5	36
66	Metabolomic analysis of insulin resistance across different mouse strains and diets. Journal of Biological Chemistry, 2017, 292, 19135-19145.	3.4	36
67	Hepatic mTORC1 Opposes Impaired Insulin Action to Control Mitochondrial Metabolism in Obesity. Cell Reports, 2016, 16, 508-519.	6.4	34
68	Metabolic profiling in Prader-Willi syndrome and nonsyndromic obesity: sex differences and the role of growth hormone. Clinical Endocrinology, 2015, 83, 797-805.	2.4	33
69	Metabolomic Profiling of the Effects of Dapagliflozin in Heart Failure With Reduced Ejection Fraction: DEFINE-HF. Circulation, 2022, 146, 808-818.	1.6	33
70	Sildenafil Treatment in Heart Failure With Preserved Ejection Fraction. JAMA Cardiology, 2017, 2, 896.	6.1	31
71	Cord Blood Metabolomics: Association With Newborn Anthropometrics and C-Peptide Across Ancestries. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4459-4472.	3.6	30
72	Research Resource: Roles for Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) in Systems Metabolism. Molecular Endocrinology, 2016, 30, 557-572.	3.7	29

#	Article	IF	Citations
73	Dietary Patterns among Asian Indians Living in the United States Have Distinct Metabolomic Profiles That Are Associated with Cardiometabolic Risk. Journal of Nutrition, 2018, 148, 1150-1159.	2.9	29
74	N6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progression. Oncotarget, 2018, 9, 31231-31243.	1.8	28
75	BCAA Supplementation in Mice with Diet-induced Obesity Alters the Metabolome Without Impairing Glucose Homeostasis. Endocrinology, 2021, 162, .	2.8	28
76	Cellular energetics and mitochondrial uncoupling in canine aging. GeroScience, 2019, 41, 229-242.	4.6	27
77	Cord Blood Metabolites Associated with Newborn Adiposity and Hyperinsulinemia. Journal of Pediatrics, 2018, 203, 144-149.e1.	1.8	26
78	Remodeling of the Acetylproteome by SIRT3 Manipulation Fails to Affect Insulin Secretion or \hat{l}^2 Cell Metabolism in the Absence of Overnutrition. Cell Reports, 2018, 24, 209-223.e6.	6.4	26
79	NADH inhibition of SIRT1 links energy state to transcription during time-restricted feeding. Nature Metabolism, 2021, 3, 1621-1632.	11.9	26
80	Enhanced GLUT4-Dependent Glucose Transport Relieves Nutrient Stress in Obese Mice Through Changes in Lipid and Amino Acid Metabolism. Diabetes, 2016, 65, 3585-3597.	0.6	24
81	Metabolomic and genetic associations with insulin resistance in pregnancy. Diabetologia, 2020, 63, 1783-1795.	6.3	21
82	The Pediatric Obesity Microbiome and Metabolism Study (POMMS): Methods, Baseline Data, and Early Insights. Obesity, 2021, 29, 569-578.	3.0	19
83	Biomarkers Associated with Physical Resilience After Hip Fracture. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, e166-e172.	3.6	19
84	Gut microbiome contributions to altered metabolism in a pig model of undernutrition. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	7.1	18
85	Improvement in insulin resistance after gastric bypass surgery is correlated with a decline in plasma 2-hydroxybutyric acid. Surgery for Obesity and Related Diseases, 2018, 14, 1126-1132.	1.2	17
86	Type-2-Diabetes Alters CSF but Not Plasma Metabolomic and AD Risk Profiles in Vervet Monkeys. Frontiers in Neuroscience, 2019, 13, 843.	2.8	17
87	Altered branched-chain \hat{l} ±-keto acid metabolism is a feature of NAFLD in individuals with severe obesity. JCI Insight, 2022, 7, .	5.0	16
88	Age-Related Adverse Inflammatory and Metabolic Changes Begin Early in Adulthood. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 283-289.	3.6	15
89	A Mitochondrial Progesterone Receptor Increases Cardiac Beta-Oxidation and Remodeling. Journal of the Endocrine Society, 2019, 3, 446-467.	0.2	15
90	Maternal Metabolites Associated With Gestational Diabetes Mellitus and a Postpartum Disorder of Glucose Metabolism. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 3283-3294.	3.6	15

#	Article	IF	CITATIONS
91	Early-life mitochondrial DNA damage results in lifelong deficits in energy production mediated by redox signaling in Caenorhabditis elegans. Redox Biology, 2021, 43, 102000.	9.0	15
92	Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences. PLoS ONE, 2015, 10, e0135693.	2.5	14
93	Muscle Kr $\tilde{A}^{1}\!\!/\!\!$ ppel-like factor 15 regulates lipid flux and systemic metabolic homeostasis. Journal of Clinical Investigation, 2021, 131, .	8.2	14
94	Plasma MicroRNAs in Established Rheumatoid Arthritis Relate to Adiposity and Altered Plasma and Skeletal Muscle Cytokine and Metabolic Profiles. Frontiers in Immunology, 2019, 10, 1475.	4.8	13
95	Effect of Bicarbonate on Net Acid Excretion, Blood Pressure, and Metabolism in Patients With and Without CKD: The Acid Base Compensation in CKD Study. American Journal of Kidney Diseases, 2021, 78, 38-47.	1.9	13
96	Nicotinamide riboside supplementation confers marginal metabolic benefits in obese mice without remodeling the muscle acetyl-proteome. IScience, 2022, 25, 103635.	4.1	11
97	Kruppel-like factor 15 is required for the cardiac adaptive response to fasting. PLoS ONE, 2018, 13, e0192376.	2.5	10
98	Circulating long chain acylcarnitines and outcomes in diabetic heart failure: an HF-ACTION clinical trial substudy. Cardiovascular Diabetology, 2021, 20, 161.	6.8	8
99	Physiological mechanisms of sustained fumagillin-induced weight loss. JCI Insight, 2018, 3, .	5.0	8
100	Urine tricarboxylic acid cycle signatures of early-stage diabetic kidney disease. Metabolomics, 2022, 18, 5.	3.0	8
101	Adverse Effects of Fenofibrate in Mice Deficient in the Protein Quality Control Regulator, CHIP. Journal of Cardiovascular Development and Disease, 2018, 5, 43.	1.6	7
102	TASK-1 and TASK-3 channels modulate pressure overload-induced cardiac remodeling and dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H566-H580.	3.2	7
103	Statin therapy inhibits fatty acid synthase via dynamic protein modifications. Nature Communications, 2022, 13, 2542.	12.8	7
104	HIV-1 Envelope Mimicry of Host Enzyme Kynureninase Does Not Disrupt Tryptophan Metabolism. Journal of Immunology, 2016, 197, 4663-4673.	0.8	6
105	Urine and Plasma Metabolome of Healthy Adults Consuming the DASH (Dietary Approaches to Stop) Tj ETQq1 1	0.784314	rgBT /Overlo
106	Deglutarylation of glutaryl-CoA dehydrogenase by deacylating enzyme SIRT5 promotes lysine oxidation in mice. Journal of Biological Chemistry, 2022, 298, 101723.	3.4	5
107	Metabolomics analysis identifies a lipidomic profile in treatment-naÃ-ve juvenile dermatomyositis patients <i>vs</i> healthy control subjects. Rheumatology, 2022, 61, 1699-1708.	1.9	4
108	Branched-Chain Amino Acid Catabolism and Cardiopulmonary Function Following Acute Maximal Exercise Testing in Adolescents. Frontiers in Cardiovascular Medicine, 2021, 8, 721354.	2.4	4

7

OLGA R ILKAYEVA

#	Article	IF	CITATIONS
109	A phase 2 trial of the somatostatin analog pasireotide to prevent GI toxicity and acute GVHD in allogeneic hematopoietic stem cell transplant. PLoS ONE, 2021, 16, e0252995.	2.5	3
110	Preliminary evidence of effects of potassium chloride on a metabolomic path to diabetes and cardiovascular disease. Metabolomics, 2020, 16, 75.	3.0	2
111	A precision medicine approach to stress testing using metabolomics and microribonucleic acids. Personalized Medicine, 2022, 19, 287-297.	1.5	1
112	Impact of parenteral lipid emulsions on the metabolomic phenotype in preterm TPNâ€fed piglets. FASEB Journal, 2013, 27, 1073.11.	0.5	0
113	Evaluating immune response and metabolic related biomarkers pre-allogenic hematopoietic stem cell transplant in acute myeloid leukemia. PLoS ONE, 2022, 17, e0268963.	2.5	0