J Nathan Hohman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7074524/publications.pdf

Version: 2024-02-01

279798 315739 37 1,849 23 38 citations g-index h-index papers 40 40 40 3014 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chemical crystallography by serial femtosecond X-ray diffraction. Nature, 2022, 601, 360-365.	27.8	33
2	Nanometer-Thick Thiophene Monolayers as Templates for the Gas-Phase Epitaxy of Poly(3,4-Ethylenedioxythiophene) Films on Gold: Implications for Organic Electronics. ACS Applied Nano Materials, 2022, 5, 3194-3200.	5.0	1
3	Sterically Invariant Carborane-Based Ligands for the Morphological and Electronic Control of Metal–Organic Chalcogenolate Assemblies. Chemistry of Materials, 2022, 34, 6933-6943.	6.7	11
4	Strongly Quantum-Confined Blue-Emitting Excitons in Chemically Configurable Multiquantum Wells. ACS Nano, 2021, 15, 4085-4092.	14.6	21
5	Anisotropic 2D excitons unveiled in organic–inorganic quantum wells. Materials Horizons, 2021, 8, 197-208.	12.2	17
6	Controlling the Schottky Barrier at the Pt/TiO ₂ Interface by Intercalation of a Self-Assembled Monolayer with Oriented Dipole Moments. Journal of Physical Chemistry C, 2021, 125, 13984-13989.	3.1	7
7	Investigation of Nucleation and Growth at a Liquid–Liquid Interface by Solvent Exchange and Synchrotron Small-Angle X-Ray Scattering. Frontiers in Chemistry, 2021, 9, 593637.	3.6	5
8	Corrosion of Late- and Post-Transition Metals into Metal–Organic Chalcogenolates and Implications for Nanodevice Architectures. ACS Applied Nano Materials, 2020, 3, 3568-3577.	5.0	9
9	Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications. Nature Communications, 2019, 10, 3112.	12.8	91
10	Metalloâ€Hydrogelâ€Assisted Synthesis and Direct Writing of Transition Metal Dichalcogenides. Advanced Functional Materials, 2019, 29, 1807612.	14.9	12
11	On the Conversion of Bauxite Ores to Highly Activated Alumina Media for Water Remediation. Advanced Sustainable Systems, 2019, 3, 1900005.	5.3	11
12	Sterically controlled mechanochemistry under hydrostatic pressure. Nature, 2018, 554, 505-510.	27.8	71
13	Effective Remediation of Groundwater Fluoride with Inexpensively Processed Indian Bauxite. Environmental Science & Environment	10.0	30
14	Tarnishing Silver Metal into Mithrene. Journal of the American Chemical Society, 2018, 140, 13892-13903.	13.7	30
15	Selfâ€Assembly of Largeâ€Area 2D Polycrystalline Transition Metal Carbides for Hydrogen Electrocatalysis. Advanced Materials, 2018, 30, e1805188.	21.0	84
16	Competing Roles of Crystallization and Degradation of a Metal–Organic Chalcogenolate Assembly under Biphasic Solvothermal Conditions. Langmuir, 2018, 34, 14265-14273.	3.5	10
17	Mithrene Is a Self-Assembling Robustly Blue Luminescent Metal–Organic Chalcogenolate Assembly for 2D Optoelectronic Applications. ACS Applied Nano Materials, 2018, 1, 3498-3508.	5.0	30
18	Hybrid metal–organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly. Nature Materials, 2017, 16, 349-355.	27.5	79

#	Article	IF	Citations
19	Defect-Tolerant Aligned Dipoles within Two-Dimensional Plastic Lattices. ACS Nano, 2015, 9, 4734-4742.	14.6	30
20	Exchange Reactions between Alkanethiolates and Alkaneselenols on $Au\{111\}$. Journal of the American Chemical Society, 2014, 136, 8110-8121.	13.7	41
21	Covalent Attachment of Diamondoid Phosphonic Acid Dichlorides to Tungsten Oxide Surfaces. Langmuir, 2013, 29, 9790-9797.	3.5	25
22	Molecular Flux Dependence of Chemical Patterning by Microcontact Printing. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10310-10316.	8.0	12
23	Photoresponsive Molecules in Wellâ€Defined Nanoscale Environments. Advanced Materials, 2013, 25, 302-312.	21.0	57
24	High-fidelity chemical patterning on oxide-free germanium. Journal of Physics Condensed Matter, 2012, 24, 164214.	1.8	2
25	Surface Defects on Plate-Shaped Silver Nanoparticles Contribute to Its Hazard Potential in a Fish Gill Cell Line and Zebrafish Embryos. ACS Nano, 2012, 6, 3745-3759.	14.6	318
26	Simple, robust molecular self-assembly on germanium. Chemical Science, 2011, 2, 1334.	7.4	24
27	Directing Substrate Morphology via Self-Assembly: Ligand-Mediated Scission of Gallium–Indium Microspheres to the Nanoscale. Nano Letters, 2011, 11, 5104-5110.	9.1	260
28	Dynamic Double Lattice of 1-Adamantaneselenolate Self-Assembled Monolayers on Au $\{111\}$. Journal of the American Chemical Society, 2011, 133, 19422-19431.	13.7	25
29	Creating Favorable Geometries for Directing Organic Photoreactions in Alkanethiolate Monolayers. Science, 2011, 331, 1312-1315.	12.6	92
30	Cage molecules for self-assembly. Materials Science and Engineering Reports, 2010, 70, 188-208.	31.8	66
31	Structural Manipulation of Hydrogen-Bonding Networks in Amide-Containing Alkanethiolate Monolayers via Electrochemical Processing. Journal of Physical Chemistry C, 2010, 114, 19744-19751.	3.1	25
32	Self-Assembly of Carboranethiol Isomers on Au $\{111\}$: Intermolecular Interactions Determined by Molecular Dipole Orientations. ACS Nano, 2009, 3, 527-536.	14.6	88
33	Self-Assembled Monolayers of 2-Adamantanethiol on Au $\{111\}$: Control of Structure and Displacement. Journal of Physical Chemistry A, 2009, 113, 3895-3903.	2.5	44
34	Reversible Lability by <i>in Situ</i> Reaction of Self-Assembled Monolayers. Journal of the American Chemical Society, 2009, 131, 2252-2259.	13.7	33
35	Microcontact insertion printing. Applied Physics Letters, 2007, 90, 063114.	3.3	50
36	Scanning Electron Microscopy of Nanoscale Chemical Patterns. ACS Nano, 2007, 1, 191-201.	14.6	73

#	ARTICLE	IF	CITATIONS
37	Enhanced molecular patterning via microdisplacement printing. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2929.	1.6	29