Jiajia Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7074302/publications.pdf

Version: 2024-02-01

201674 276875 2,598 41 27 41 citations h-index g-index papers 41 41 41 2429 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Enhanced Triboelectric Nanogenerators Based on MoS ₂ Monolayer Nanocomposites Acting as Electron-Acceptor Layers. ACS Nano, 2017, 11, 8356-8363.	14.6	196
2	Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy, 2018, 45, 380-389.	16.0	178
3	Self-Powered Microfluidic Transport System Based on Triboelectric Nanogenerator and Electrowetting Technique. ACS Nano, 2018, 12, 1491-1499.	14.6	159
4	Electron Transfer as a Liquid Droplet Contacting a Polymer Surface. ACS Nano, 2020, 14, 17565-17573.	14.6	141
5	Mechanism analysis of the capacitance contributions and ultralong cycling-stability of the isomorphous MnO ₂ @MnO ₂ core/shell nanostructures for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 6168-6176.	10.3	138
6	Fully Elastic and Metalâ€Free Tactile Sensors for Detecting both Normal and Tangential Forces Based on Triboelectric Nanogenerators. Advanced Functional Materials, 2018, 28, 1802989.	14.9	124
7	Theoretical modeling of triboelectric nanogenerators (TENGs). Journal of Applied Physics, 2020, 128, .	2.5	110
8	Onâ€Skin Triboelectric Nanogenerator and Selfâ€Powered Sensor with Ultrathin Thickness and High Stretchability. Small, 2017, 13, 1702929.	10.0	108
9	Self-Powered Tactile Sensor with Learning and Memory. ACS Nano, 2020, 14, 1390-1398.	14.6	107
10	Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors. Electrochimica Acta, 2015, 157, 108-114.	5.2	96
11	A Selfâ€Powered Angle Sensor at Nanoradianâ€Resolution for Robotic Arms and Personalized Medicare. Advanced Materials, 2020, 32, e2001466.	21.0	93
12	3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators. Nano Energy, 2019, 60, 630-640.	16.0	87
13	Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell's displacement current. Nano Energy, 2019, 59, 380-389.	16.0	84
14	Theoretical foundations of triboelectric nanogenerators (TENGs). Science China Technological Sciences, 2020, 63, 1087-1109.	4.0	83
15	Harshâ€Environmentalâ€Resistant Triboelectric Nanogenerator and Its Applications in Autodrive Safety Warning. Advanced Energy Materials, 2018, 8, 1801898.	19.5	82
16	Open-book-like triboelectric nanogenerators based on low-frequency roll–swing oscillators for wave energy harvesting. Nanoscale, 2019, 11, 7199-7208.	5.6	78
17	Self-cleaning triboelectric nanogenerator based on TiO2 photocatalysis. Nano Energy, 2020, 70, 104499.	16.0	78
18	Studying about applied force and the output performance of sliding-mode triboelectric nanogenerators. Nano Energy, 2018, 48, 292-300.	16.0	60

#	Article	IF	CITATIONS
19	Structural figure-of-merits of triboelectric nanogenerators at powering loads. Nano Energy, 2018, 51, 688-697.	16.0	59
20	Wind-driven self-powered wireless environmental sensors for Internet of Things at long distance. Nano Energy, 2020, 73, 104819.	16.0	58
21	Bioinspired soft electroreceptors for artificial precontact somatosensation. Science Advances, 2022, 8, .	10.3	56
22	Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode. Applied Physics Reviews, 2020, 7, .	11.3	45
23	High-Electrification Performance and Mechanism of a Water–Solid Mode Triboelectric Nanogenerator. ACS Nano, 2021, 15, 8706-8714.	14.6	43
24	The influence of multiple fillers on friction and wear behavior of epoxy composite coatings. Surface and Coatings Technology, 2019, 362, 213-219.	4.8	39
25	Designing Rules and Optimization of Triboelectric Nanogenerator Arrays. Advanced Energy Materials, 2021, 11, 2100065.	19.5	38
26	Reliable mechatronic indicator for self-powered liquid sensing toward smart manufacture and safe transportation. Materials Today, 2020, 41, 10-20.	14.2	34
27	Long Distance Transport of Microdroplets and Precise Microfluidic Patterning Based on Triboelectric Nanogenerator. Advanced Materials Technologies, 2019, 4, 1800300.	5.8	30
28	Magnetic-field-assisted hydrothermal synthesis of 2 \tilde{A} — 2 tunnels of MnO ₂ nanostructures with enhanced supercapacitor performance. CrystEngComm, 2014, 16, 9987-9991.	2.6	27
29	Motion behavior of water droplets driven by triboelectric nanogenerator. Applied Physics Letters, 2018, 112, .	3.3	27
30	Urchin-like MnO2 capped ZnO nanorods as high-rate and high-stability pseudocapacitor electrodes. Electrochimica Acta, 2015, 186, 1-6.	5.2	24
31	2D Materials as Effective Cantilever Piezoelectric Nano Energy Harvesters. ACS Energy Letters, 2021, 6, 2313-2319.	17.4	20
32	Theoretical model and optimal output of a cylindrical triboelectric nanogenerator. Nano Energy, 2022, 92, 106762.	16.0	19
33	A Selfâ€Powered Early Warning Glove with Integrated Elasticâ€Arched Triboelectric Nanogenerator and Flexible Printed Circuit for Realâ€Time Safety Protection. Advanced Materials Technologies, 2022, 7, 2100787.	5.8	17
34	Investigation on energy efficiency of rolling triboelectric nanogenerator using cylinder-cylindrical shell dynamic model. Nano Energy, 2021, 80, 105583.	16.0	14
35	Three-dimensional mathematical modelling and dynamic analysis of freestanding triboelectric nanogenerators. Journal Physics D: Applied Physics, 2022, 55, 345501.	2.8	11
36	Energy Optimization of a Mirrorâ€Symmetric Spherical Triboelectric Nanogenerator. Advanced Functional Materials, 2022, 32, .	14.9	9

#	Article	IF	CITATIONS
37	Maxwell's equations for a mechano-driven varying-speed motion media system under slow motion and nonrelativistic approximations. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2022, 52, 1198-1211.	0.5	7
38	Modeling and optimization of a rotational symmetric spherical triboelectric generator. Nano Energy, 2022, 100, 107491.	16.0	7
39	A One-Step Electrochemical Method for the Production of TiO2â^'xNxNanotubes. Journal of the Electrochemical Society, 2013, 160, H335-H337.	2.9	5
40	Theory and shape optimization of acoustic driven triboelectric nanogenerators. Materials Today Physics, 2022, 27, 100784.	6.0	4
41	Effects of secondary magnetic field on the properties of Al-doped ZnO films prepared by RF magnetron sputtering. Ceramics International, 2014, 40, 14347-14353.	4.8	3