Loredana Protesescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7074205/publications.pdf

Version: 2024-02-01

58 papers 16,806 citations

35 h-index 54 g-index

60 all docs 60 does citations

60 times ranked 13978 citing authors

#	Article	IF	CITATIONS
1	Nanocrystals of Cesium Lead Halide Perovskites (CsPbX $<$ sub $>3<$ sub $>$, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters, 2015, 15, 3692-3696.	4.5	6,814
2	Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX ₃ , X = Cl, Br, I). Nano Letters, 2015, 15, 5635-5640.	4.5	1,938
3	Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 2017, 358, 745-750.	6.0	1,755
4	Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Communications, 2015, 6, 8056.	5.8	1,278
5	Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes. Nano Letters, 2016, 16, 5866-5874.	4.5	501
6	Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping. Nano Letters, 2016, 16, 1869-1877.	4.5	425
7	Dismantling the "Red Wall―of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals. ACS Nano, 2017, 11, 3119-3134.	7.3	414
8	Monodisperse Formamidinium Lead Bromide Nanocrystals with Bright and Stable Green Photoluminescence. Journal of the American Chemical Society, 2016, 138, 14202-14205.	6.6	385
9	Monodisperse and Inorganically Capped Sn and Sn/SnO ₂ Nanocrystals for High-Performance Li-Ion Battery Anodes. Journal of the American Chemical Society, 2013, 135, 4199-4202.	6.6	346
10	Single Cesium Lead Halide Perovskite Nanocrystals at Low Temperature: Fast Single-Photon Emission, Reduced Blinking, and Exciton Fine Structure. ACS Nano, 2016, 10, 2485-2490.	7. 3	299
11	Coherent Nanotwins and Dynamic Disorder in Cesium Lead Halide Perovskite Nanocrystals. ACS Nano, 2017, 11, 3819-3831.	7.3	246
12	Low-Cost Synthesis of Highly Luminescent Colloidal Lead Halide Perovskite Nanocrystals by Wet Ball Milling. ACS Applied Nano Materials, $2018,1,1300$ - 1308 .	2.4	159
13	Exploration of Near-Infrared-Emissive Colloidal Multinary Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform. ACS Nano, 2018, 12, 5504-5517.	7. 3	138
14	Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage. Journal of the American Chemical Society, 2014, 136, 12422-12430.	6.6	133
15	Sensitized solar cells with colloidal PbS–CdS core–shell quantum dots. Physical Chemistry Chemical Physics, 2014, 16, 736-742.	1.3	125
16	5.2% efficient PbS nanocrystal Schottky solar cells. Energy and Environmental Science, 2013, 6, 3054.	15.6	123
17	Counterion-Mediated Ligand Exchange for PbS Colloidal Quantum Dot Superlattices. ACS Nano, 2015, 9, 11951-11959.	7.3	121
18	Unveiling the Shape Evolution and Halide-Ion-Segregation in Blue-Emitting Formamidinium Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform. Nano Letters, 2018, 18, 1246-1252.	4.5	106

#	Article	IF	CITATIONS
19	A General Synthesis Strategy for Monodisperse Metallic and Metalloid Nanoparticles (In, Ga, Bi, Sb, Zn,) Tj ETQq1 635-647.	1 0.78431 3.2	4 rgBT /Ovei 99
20	Surface Functionalization of Semiconductor and Oxide Nanocrystals with Small Inorganic Oxoanions (PO ₄ ^{3–} , MoO ₄ ^{2–}) and Polyoxometalate Ligands. ACS Nano, 2014, 8, 9388-9402.	7.3	92
21	Origin of the increased open circuit voltage in PbS–CdS core–shell quantum dot solar cells. Journal of Materials Chemistry A, 2015, 3, 1450-1457.	5.2	91
22	Facile Droplet-based Microfluidic Synthesis of Monodisperse IV–VI Semiconductor Nanocrystals with Coupled In-Line NIR Fluorescence Detection. Chemistry of Materials, 2014, 26, 2975-2982.	3.2	87
23	Unraveling the Core–Shell Structure of Ligand-Capped Sn/SnOxNanoparticles by Surface-Enhanced Nuclear Magnetic Resonance, Mössbauer, and X-ray Absorption Spectroscopies. ACS Nano, 2014, 8, 2639-2648.	7.3	87
24	Microfluidic Reactors Provide Preparative and Mechanistic Insights into the Synthesis of Formamidinium Lead Halide Perovskite Nanocrystals. Chemistry of Materials, 2017, 29, 8433-8439.	3.2	81
25	Efficient bio-conversion of glycerol to glycerol carbonate catalyzed by lipase extracted from Aspergillus niger. Green Chemistry, 2012, 14, 478.	4.6	74
26	High Infrared Photoconductivity in Films of Arsenic-Sulfide-Encapsulated Lead-Sulfide Nanocrystals. ACS Nano, 2014, 8, 12883-12894.	7.3	62
27	Long-Lived Hot Carriers in Formamidinium Lead Iodide Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 12434-12440.	1.5	62
28	Exciton Recombination in Formamidinium Lead Triiodide: Nanocrystals versus Thin Films. Small, 2017, 13, 1700673.	5.2	62
29	Phonon Interaction and Phase Transition in Single Formamidinium Lead Bromide Quantum Dots. Nano Letters, 2018, 18, 4440-4446.	4.5	57
30	Random Lasing with Systematic Threshold Behavior in Films of CdSe/CdS Core/Thick-Shell Colloidal Quantum Dots. ACS Nano, 2015, 9, 9792-9801.	7.3	49
31	Atomistic Description of Thiostannate-Capped CdSe Nanocrystals: Retention of Four-Coordinate SnS4 Motif and Preservation of Cd-Rich Stoichiometry. Journal of the American Chemical Society, 2015, 137, 1862-1874.	6.6	48
32	Tuning the Energetic Landscape of Ruddlesden–Popper Perovskite Films for Efficient Solar Cells. ACS Energy Letters, 2020, 5, 39-46.	8.8	47
33	Resolving the Core and the Surface of CdSe Quantum Dots and Nanoplatelets Using Dynamic Nuclear Polarization Enhanced PASS–PIETA NMR Spectroscopy. ACS Central Science, 2018, 4, 1113-1125.	5.3	46
34	Recyclable biocatalytic composites of lipase-linked magnetic macro-/nano-particles for glycerol carbonate synthesis. Applied Catalysis A: General, 2012, 437-438, 90-95.	2.2	42
35	Biocatalytic alternative for bio-glycerol conversion with alkyl carbonates via a lipase-linked magnetic nano-particles assisted process. Applied Catalysis B: Environmental, 2014, 145, 120-125.	10.8	34
36	Size-Dependent Fault-Driven Relaxation and Faceting in Zincblende CdSe Colloidal Quantum Dots. ACS Nano, 2018, 12, 12558-12570.	7.3	33

#	Article	IF	CITATIONS
37	Organic–Inorganic Hybrid Solution-Processed H ₂ -Evolving Photocathodes. ACS Applied Materials & Distribution (1908) amp; Interfaces, 2015, 7, 19083-19090.	4.0	31
38	Efficient Optical Amplification in the Nanosecond Regime from Formamidinium Lead Iodide Nanocrystals. ACS Photonics, 2018, 5, 907-917.	3.2	30
39	Opto-electronics of PbS quantum dot and narrow bandgap polymer blends. Journal of Materials Chemistry C, 2015, 3, 5499-5505.	2.7	26
40	Novel Pd heterogeneous catalysts for cycloisomerisation of acetylenic carboxylic acids. Green Chemistry, 2010, 12, 2145.	4.6	23
41	High performance photoelectrochemical hydrogen generation and solar cells with a double type II heterojunction. Physical Chemistry Chemical Physics, 2014, 16, 7531-7537.	1.3	22
42	Hybrid inorganic–organic tandem solar cells for broad absorption of the solar spectrum. Physical Chemistry Chemical Physics, 2014, 16, 7672-7676.	1.3	19
43	Temperature-Dependent Optical Properties of PbS/CdS Core/Shell Quantum Dot Thin Films: Probing the Wave Function Delocalization. Journal of Physical Chemistry C, 2015, 119, 17480-17486.	1.5	18
44	Free carrier generation and recombination in PbS quantum dot solar cells. Applied Physics Letters, 2016, 108, .	1.5	16
45	Structural Dynamics and Tunability for Colloidal Tin Halide Perovskite Nanostructures. Advanced Materials, 2022, 34, e2201353.	11.1	16
46	Photophysics of PbS Quantum Dot Films Capped with Arsenic Sulfide Ligands. Advanced Energy Materials, 2014, 4, 1301547.	10.2	15
47	Airâ€Stable, Near―to Midâ€Infrared Emitting Solids of PbTe/CdTe Core–Shell Colloidal quantum dots. ChemPhysChem, 2016, 17, 670-674.	1.0	15
48	Exciton Gating and Triplet Deshelving in Single Dye Molecules Excited by Perovskite Nanocrystal FRET Antennae. Journal of Physical Chemistry Letters, 2019, 10, 1055-1062.	2.1	14
49	Photochromism in Ruddlesden–Popper copper-based perovskites: a light-induced change of coordination number at the surface. Journal of Materials Chemistry C, 2020, 8, 15377-15384.	2.7	14
50	Colloidal nano-MOFs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites. Chemical Science, 2021, 12, 6129-6135.	3.7	14
51	Unusual Behavior of a Novel Heterogeneous Chiral Dimer Cr(III)â^'Salen Complex in the Epoxidation/Epoxide Ring-Opening Reaction of trans-Methylcinnamate Ester. Journal of Physical Chemistry C, 2011, 115, 1112-1122.	1.5	13
52	Exciton–Ligand Interactions in PbS Quantum Dots Capped with Metal Chalcogenides. Journal of Physical Chemistry C, 2020, 124, 27848-27857.	1.5	5
53	Biocatalysis applied in glycerol chemistry – green synthesis of glycerol carbonate. New Biotechnology, 2012, 29, S72-S73.	2.4	2
54	The effect of PbS nanocrystal additives on the charge transfer state recombination in a bulk heterojunction blend. Organic Photonics and Photovoltaics, 2018, 6, 1-7.	1.3	0

#	Article	IF	CITATIONS
55	Exciton gating and triplet deshelving in single dye molecules excited by perovskite nanocrystal FRET antennae., 0, , .		O
56	Bright Triplet Emission from Lead Halide Perovskite Nanocrystals. , 0, , .		0
57	Bright Triplet Emission from Lead Halide Perovskite Nanocrystals. , 0, , .		О
58	Exciton Gating and Triplet Deshelving in Single Dye Molecules Excited by Perovskite Nanocrystal FRET Antennae., 0,,,.		0