
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7073764/publications.pdf Version: 2024-02-01

Δκκλ Ζεμμλρι

#	Article	IF	CITATIONS
1	FloVasion: Towards Detection of non-sensitive Variable Based Evasive Information-Flow in Android Apps. IETE Journal of Research, 2022, 68, 2580-2594.	2.6	2
2	Vulnerability Evaluation of Android Malware Detectors against Adversarial Examples. Procedia Computer Science, 2021, 192, 3320-3331.	2.0	1
3	A Hierarchical Classification System for the Detection of Covid-19 from Chest X-Ray Images. , 2021, , .		6
4	SneakLeak+: Large-scale klepto apps analysis. Future Generation Computer Systems, 2020, 109, 593-603.	7.5	5
5	EspyDroid+: Precise reflection analysis of android apps. Computers and Security, 2020, 90, 101688.	6.0	16
6	Automated landmarking for insects morphometric analysis using deep neural networks. Ecological Informatics, 2020, 60, 101175.	5.2	10
7	SPARK: Secure Pseudorandom Key-based Encryption for Deduplicated Storage. Computer Communications, 2020, 154, 148-159.	5.1	1
8	Deep Learning in Mining of Visual Content. SpringerBriefs in Computer Science, 2020, , .	0.2	4
9	Deep in the Wild. SpringerBriefs in Computer Science, 2020, , 35-48.	0.2	1
10	Supervised Learning Problem Formulation. SpringerBriefs in Computer Science, 2020, , 5-11.	0.2	0
11	Case Study for Digital Cultural Content Mining. SpringerBriefs in Computer Science, 2020, , 71-85.	0.2	0
12	Introducing Domain Knowledge. SpringerBriefs in Computer Science, 2020, , 87-97.	0.2	1
13	Optimization Methods. SpringerBriefs in Computer Science, 2020, , 21-33.	0.2	0
14	Neural Networks from Scratch. SpringerBriefs in Computer Science, 2020, , 13-20.	0.2	0
15	Dynamic Content Mining. SpringerBriefs in Computer Science, 2020, , 59-69.	0.2	0
16	Convolutional Neural Networks as Image Analysis Tool. SpringerBriefs in Computer Science, 2020, , 49-58.	0.2	0
17	Network Intrusion Detection for IoT Security Based on Learning Techniques. IEEE Communications Surveys and Tutorials, 2019, 21, 2671-2701.	39.4	511
18	Leveraging the link quality awareness for body node coordinator (BNC) placement in WBANs. , 2019, , .		1

#	Article	IF	CITATIONS
19	Deterministic Leader Election Takes \$\$Theta (D + log n)\$\$ Î~ (D + log n) Bit Rounds. Algorithmica, 2019, 81, 1901-1920.	1.3	3
20	DroidDivesDeep: Android Malware Classification via Low Level Monitorable Features with Deep Neural Networks. Communications in Computer and Information Science, 2019, , 125-139.	0.5	5
21	Privacy Preserving Data Offloading Based on Transformation. Lecture Notes in Computer Science, 2019, , 86-92.	1.3	0
22	A machine learning based approach to detect malicious android apps using discriminant system calls. Future Generation Computer Systems, 2019, 94, 333-350.	7.5	50
23	An Intrusion Detection System for the OneM2M Service Layer Based on Edge Machine Learning. Lecture Notes in Computer Science, 2019, , 508-523.	1.3	2
24	Landmarks Detection by Applying Deep Networks. , 2018, , .		1
25	Whac-A-Mole: Smart node positioning in clone attack in wireless sensor networks. Computer Communications, 2018, 119, 66-82.	5.1	10
26	Unraveling Reflection Induced Sensitive Leaks in Android Apps. Lecture Notes in Computer Science, 2018, , 49-65.	1.3	0
27	WBAN Path Loss Based Approach For Human Activity Recognition With Machine Learning Techniques. , 2018, , .		12
28	Increasing Training Stability for Deep CNNS. , 2018, , .		1
29	SWORD: Semantic aWare andrOid malwaRe Detector. Journal of Information Security and Applications, 2018, 42, 46-56.	2.5	27
30	Prediction of visual attention with deep CNN on artificially degraded videos for studies of attention of patients with Dementia. Multimedia Tools and Applications, 2017, 76, 22527-22546.	3.9	12
31	Detecting Inter-App Information Leakage Paths. , 2017, , .		2
32	SneakLeak: Detecting Multipartite Leakage Paths in Android Apps. , 2017, , .		4
33	Android inter-app communication threats and detection techniques. Computers and Security, 2017, 70, 392-421.	6.0	29
34	Deep Saliency: Prediction of Interestingness in Video with CNN. , 2017, , 43-74.		2
35	A Fault-Tolerant Handshake Algorithm for Local Computations. , 2016, , .		4
36	MCLSPM: Multi-constraints link stable multicast routing protocol in adhoc networks. , 2016, , .		4

#	Article	IF	CITATIONS
37	Randomised distributed MIS and colouring algorithms for rings with oriented edges in O(logâțn) bit rounds. Information and Computation, 2016, 251, 208-214.	0.7	Ο
38	MimeoDroid: Large Scale Dynamic App Analysis on Cloned Devices via Machine Learning Classifiers. , 2016, , .		5
39	Certified Impossibility Results and Analyses in Coq of Some Randomised Distributed Algorithms. Lecture Notes in Computer Science, 2016, , 69-81.	1.3	0
40	Intersection Automata Based Model for Android Application Collusion. , 2016, , .		11
41	A distributed enumeration algorithm and applications to all pairs shortest paths, diameter…. Information and Computation, 2016, 247, 141-151.	0.7	2
42	Deterministic Leader Election in \$\$O(D+log n)\$\$ Time with Messages of Size O(1). Lecture Notes in Computer Science, 2016, , 16-28.	1.3	5
43	Lightweight secure group communications for resource constrained devices. International Journal of Space-Based and Situated Computing, 2015, 5, 187.	0.2	9
44	DRACO., 2015, , .		24
45	Greedy Flooding in Redoubtable Sensor Networks. , 2014, , .		1
46	Randomized broadcasting in wireless mobile sensor networks. Concurrency Computation Practice and Experience, 2013, 25, 203-217.	2.2	3
47	Lightweight Source Authentication Mechanisms for Group Communications in Wireless Sensor Networks. , 2013, , .		9
48	Optimal bit complexity randomised distributed MIS and maximal matching algorithms for anonymous rings. Information and Computation, 2013, 233, 32-40.	0.7	4
49	Analysis of Fully Distributed Splitting and Naming Probabilistic Procedures and Applications. Lecture Notes in Computer Science, 2013, , 153-164.	1.3	2
50	An optimal bit complexity randomized distributed MIS algorithm. Distributed Computing, 2011, 23, 331-340.	0.8	44
51	Sublinear Fully Distributed Partition with Applications. Theory of Computing Systems, 2010, 47, 368-404.	1.1	11
52	Uniform election in trees and polyominoids. Discrete Applied Mathematics, 2010, 158, 981-987.	0.9	4
53	About randomised distributed graph colouring and graph partition algorithms. Information and Computation, 2010, 208, 1296-1304.	0.7	15
54	Broadcast in wireless mobile sensor networks with population protocols and extension with the		1

rendezvous model., 2010,,.

#	Article	IF	CITATIONS
55	An Optimal Bit Complexity Randomized Distributed MIS Algorithm (Extended Abstract). Lecture Notes in Computer Science, 2010, , 323-337.	1.3	13
56	Brief Annoucement: Analysis of an Optimal Bit Complexity Randomised Distributed Vertex Colouring Algorithm. Lecture Notes in Computer Science, 2009, , 359-364.	1.3	2
57	A Generic Distributed Algorithm for Computing by Random Mobile Agents. Lecture Notes in Computer Science, 2009, , 392-397.	1.3	0
58	On handshakes in random graphs. Information Processing Letters, 2008, 108, 119-123.	0.6	4
59	Merging Time of Random Mobile Agents. , 2008, , 179-190.		1
60	A Self-stabilizing Distributed Algorithm for Resolving Conflicts. Lecture Notes in Computer Science, 2007, , 1042-1051.	1.3	0
61	Broadcast in the rendezvous model. Information and Computation, 2006, 204, 697-712.	0.7	4
62	Locally guided randomized elections in trees: The totally fair case. Information and Computation, 2005, 198, 40-55.	0.7	3
63	Broadcast in the Rendezvous Model. Lecture Notes in Computer Science, 2004, , 559-570.	1.3	1
64	Analysis of a randomized rendezvous algorithm. Information and Computation, 2003, 184, 109-128.	0.7	20
65	The compactness of adaptive routing tables. Journal of Discrete Algorithms, 2003, 1, 237-254.	0.7	2
66	Randomized local elections. Information Processing Letters, 2002, 82, 313-320.	0.6	18
67	Randomized Rendezvous. , 2000, , 183-194.		12
68	Methods for Computing the Concurrency Degree of Commutation Monoids. , 2000, , 731-742.		3
69	A Probabilistic Model for Distributed Merging of Mobile Agents. , 0, , .		3