
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/70710/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microbial Cell Factories, 2014, 13, S3.	4.0	363
2	Structural Analysis and Characterization of Lacticin Q, a Novel Bacteriocin Belonging to a New Family of Unmodified Bacteriocins of Gram-Positive Bacteria. Applied and Environmental Microbiology, 2007, 73, 2871-2877.	3.1	141
3	Identification of the Lantibiotic Nisin Q, a New Natural Nisin Variant Produced byLactococcus lactis61-14 Isolated from a River in Japan. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1616-1619.	1.3	139
4	Peptide-Lipid Huge Toroidal Pore, a New Antimicrobial Mechanism Mediated by a Lactococcal Bacteriocin, Lacticin Q. Antimicrobial Agents and Chemotherapy, 2009, 53, 3211-3217.	3.2	114
5	Identification and Characterization of Lactocyclicin Q, a Novel Cyclic Bacteriocin Produced by <i>Lactococcus</i> sp. Strain QU 12. Applied and Environmental Microbiology, 2009, 75, 1552-1558.	3.1	112
6	Circular and Leaderless Bacteriocins: Biosynthesis, Mode of Action, Applications, and Prospects. Frontiers in Microbiology, 2018, 9, 2085.	3.5	109
7	Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. International Journal of Food Microbiology, 2001, 70, 291-301.	4.7	106
8	Continuous d-lactic acid production by a novelthermotolerant Lactobacillus delbrueckii subsp. lactis QU 41. Applied Microbiology and Biotechnology, 2011, 89, 1741-1750.	3.6	102
9	Antimicrobial mechanism of lantibiotics. Biochemical Society Transactions, 2012, 40, 1528-1533.	3.4	95
10	Identification and Characterization of Leucocyclicin Q, a Novel Cyclic Bacteriocin Produced by Leuconostoc mesenteroides TK41401. Applied and Environmental Microbiology, 2011, 77, 8164-8170.	3.1	90
11	Lactococcin Q, a Novel Two-Peptide Bacteriocin Produced by <i>Lactococcus lactis</i> QU 4. Applied and Environmental Microbiology, 2006, 72, 3383-3389.	3.1	86
12	Efficient Homofermentative <scp>l</scp> -(+)-Lactic Acid Production from Xylose by a Novel Lactic Acid Bacterium, <i>Enterococcus mundtii</i> QU 25. Applied and Environmental Microbiology, 2011, 77, 1892-1895.	3.1	75
13	Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects. Applied Microbiology and Biotechnology, 2018, 102, 5911-5924.	3.6	73
14	Purification, characterization and in vitro cytotoxicity of the bacteriocin from Pediococcus acidilactici K2a2-3 against human colon adenocarcinoma (HT29) and human cervical carcinoma (HeLa) cells. World Journal of Microbiology and Biotechnology, 2011, 27, 975-980.	3.6	72
15	Anti-listeria activity of Pediococcus pentosaceus BCC 3772 and application as starter culture for Nham, a traditional fermented pork sausage. Food Control, 2012, 25, 190-196.	5.5	67
16	Screening and Characterization of Novel Bacteriocins from Lactic Acid Bacteria. Bioscience, Biotechnology and Biochemistry, 2013, 77, 893-899.	1.3	66
17	Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression. Journal of Bioscience and Bioengineering, 2015, 119, 153-158.	2.2	66
18	Purification and Characterization of Multiple Bacteriocins and an Inducing Peptide Produced byEnterococcus faeciumNKR-5-3 from Thai Fermented Fish. Bioscience, Biotechnology and Biochemistry, 2012, 76, 947-953.	1.3	65

#	Article	IF	CITATIONS
19	Characterization and Structure Analysis of a Novel Bacteriocin, Lacticin Z, Produced by <i>Lactococcus lactis</i> QU 14. Bioscience, Biotechnology and Biochemistry, 2007, 71, 1984-1992.	1.3	62
20	Enterocin X, a Novel Two-Peptide Bacteriocin from <i>Enterococcus faecium</i> KU-B5, Has an Antibacterial Spectrum Entirely Different from Those of Its Component Peptides. Applied and Environmental Microbiology, 2010, 76, 4542-4545.	3.1	62
21	Identification, Characterization, and Three-Dimensional Structure of the Novel Circular Bacteriocin, Enterocin NKR-5-3B, from <i>Enterococcus faecium</i> . Biochemistry, 2015, 54, 4863-4876.	2.5	62
22	lsolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo l-(+)-lactic acid. Applied Microbiology and Biotechnology, 2011, 89, 1039-1049.	3.6	61
23	Lanthionine introduction into nukacin ISK-1 prepeptide by co-expression with modification enzyme NukM in Escherichia coli. Biochemical and Biophysical Research Communications, 2005, 336, 507-513.	2.1	60
24	Garvieacin Q, a Novel Class II Bacteriocin from Lactococcus garvieae BCC 43578. Applied and Environmental Microbiology, 2012, 78, 1619-1623.	3.1	59
25	Enterocin F4-9, a Novel <i>O</i> -Linked Glycosylated Bacteriocin. Applied and Environmental Microbiology, 2015, 81, 4819-4826.	3.1	57
26	Lacticin Q, a Lactococcal Bacteriocin, Causes High-Level Membrane Permeability in the Absence of Specific Receptors. Applied and Environmental Microbiology, 2009, 75, 538-541.	3.1	56
27	Improved lactic acid productivity by an open repeated batch fermentation system using Enterococcus mundtii QU 25. RSC Advances, 2013, 3, 8437.	3.6	54
28	Nukacin ISK-1, a Bacteriostatic Lantibiotic. Antimicrobial Agents and Chemotherapy, 2009, 53, 3595-3598.	3.2	46
29	Isolation and Characterization of Enterocin W, a Novel Two-Peptide Lantibiotic Produced by Enterococcus faecalis NKR-4-1. Applied and Environmental Microbiology, 2012, 78, 900-903.	3.1	45
30	Lactococcal membrane-permeabilizing antimicrobial peptides. Applied Microbiology and Biotechnology, 2010, 88, 1-9.	3.6	43
31	l-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss. Journal of Bioscience and Bioengineering, 2016, 121, 89-95.	2.2	43
32	Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose. FEMS Microbiology Letters, 2015, 362, 1-7.	1.8	40
33	Highly efficient <scp>l</scp> -lactic acid production from xylose in cell recycle continuous fermentation using Enterococcus mundtii QU 25. RSC Advances, 2016, 6, 17659-17668.	3.6	40
34	Monitoring of the multiple bacteriocin production by Enterococcus faecium NKR-5-3 through a developed liquid chromatography and mass spectrometry-based quantification system. Journal of Bioscience and Bioengineering, 2012, 114, 490-496.	2.2	33
35	Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin. Journal of Bacteriology, 2016, 198, 291-300.	2.2	33
36	Kunkecin A, a New Nisin Variant Bacteriocin Produced by the Fructophilic Lactic Acid Bacterium, Apilactobacillus kunkeei FF30-6 Isolated From Honey Bees. Frontiers in Microbiology, 2020, 11, 571903.	3.5	32

#	Article	IF	CITATIONS
37	<scp>l</scp> -(+)-Lactic acid production by co-fermentation of cellobiose and xylose without carbon catabolite repression using Enterococcus mundtii QU 25. RSC Advances, 2014, 4, 22013-22021.	3.6	29
38	Diversity and dynamics of sourdough lactic acid bacteriota created by a slow food fermentation system. Journal of Bioscience and Bioengineering, 2021, 131, 333-340.	2.2	28
39	Lantibiotic Transporter Requires Cooperative Functioning of the Peptidase Domain and the ATP Binding Domain. Journal of Biological Chemistry, 2011, 286, 11163-11169.	3.4	27
40	Lacticin Q-Mediated Selective Toxicity Depending on Physicochemical Features of Membrane Components. Antimicrobial Agents and Chemotherapy, 2011, 55, 2446-2450.	3.2	27
41	Identification of Enterocin NKR-5-3C, a Novel Class IIa Bacteriocin Produced by a Multiple Bacteriocin Producer, <i>Enterococcus faecium</i> NKR-5-3. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1245-1247.	1.3	27
42	Identification of the genes involved in the secretion and self-immunity of lacticin Q, an unmodified leaderless bacteriocin from Lactococcus lactis QU 5. Microbiology (United Kingdom), 2012, 158, 2927-2935.	1.8	25
43	The lantibiotic nukacin ISK-1 exists in an equilibrium between active and inactive lipid-II binding states. Communications Biology, 2018, 1, 150.	4.4	24
44	Plasmid-encoded glycosyltransferase operon is responsible for exopolysaccharide production, cell aggregation, and bile resistance in a probiotic strain, LactobacillusAbrevis KB290. Journal of Bioscience and Bioengineering, 2019, 128, 391-397.	2.2	24
45	Gene Cluster Responsible for Secretion of and Immunity to Multiple Bacteriocins, the NKR-5-3 Enterocins. Applied and Environmental Microbiology, 2014, 80, 6647-6655.	3.1	23
46	Characterisation of the action mechanism of a Lactococcus-specific bacteriocin, lactococcin Z. Journal of Bioscience and Bioengineering, 2018, 126, 603-610.	2.2	23
47	Bifunctional Gene Cluster <i>lnqBCDEF</i> Mediates Bacteriocin Production and Immunity with Differential Genetic Requirements. Applied and Environmental Microbiology, 2013, 79, 2446-2449.	3.1	22
48	Biological function of a DUF95 superfamily protein involved in the biosynthesis ofÂa circular bacteriocin, leucocyclicin Q. Journal of Bioscience and Bioengineering, 2014, 117, 158-164.	2.2	22
49	Complete Genome Sequence of Enterococcus mundtii QU 25, an Efficient L-(+)-Lactic Acid-Producing Bacterium. DNA Research, 2014, 21, 369-377.	3.4	22
50	Complete Covalent Structure of Nisin Q, New Natural Nisin Variant, Containing Post-Translationally Modified Amino Acids. Bioscience, Biotechnology and Biochemistry, 2008, 72, 1750-1755.	1.3	20
51	<i>In vitro</i> synergistic activities of cefazolin and nisin A against mastitis pathogens. Journal of Veterinary Medical Science, 2017, 79, 1472-1479.	0.9	20
52	Functional analysis of the biosynthetic gene cluster required for immunity and secretion of a novel <i>Lactococcus</i> -specific bacteriocin, lactococcin Z. Journal of Applied Microbiology, 2017, 123, 1124-1132.	3.1	19
53	Impact of pH on succession of sourdough lactic acid bacteria communities and their fermentation properties. Bioscience of Microbiota, Food and Health, 2020, 39, 152-159.	1.8	18
54	Mutations near the cleavage site of enterocin NKR-5-3B prepeptide reveal new insights into its biosynthesis. Microbiology (United Kingdom), 2017, 163, 431-441.	1.8	18

#	Article	IF	CITATIONS
55	InÂvitro catalytic activity of N-terminal and C-terminal domains in NukM, theÂpost-translational modification enzyme of nukacin ISK-1. Journal of Bioscience and Bioengineering, 2015, 120, 624-629.	2.2	17
56	Dense tracking of the dynamics of the microbial community and chemicals constituents in spontaneous wheat sourdough during two months of backslopping. Journal of Bioscience and Bioengineering, 2019, 128, 170-176.	2.2	17
5 7	Class IId or Linear and Non-Pediocin-Like Bacteriocins. , 2011, , 237-252.		16
58	LnqR, a TetR-family transcriptional regulator, positively regulates lacticin Q production inLactococcus lactisQU 5. FEMS Microbiology Letters, 2016, 363, fnw200.	1.8	16
59	Evaluation of leader peptides that affect the secretory ability of a multiple bacteriocin transporter, EnkT. Journal of Bioscience and Bioengineering, 2018, 126, 23-29.	2.2	16
60	Greener L-lactic acid production through in situ extractive fermentation by an acid-tolerant Lactobacillus strain. Applied Microbiology and Biotechnology, 2018, 102, 6425-6435.	3.6	15
61	Identification of Lactococcus-Specific Bacteriocins Produced by Lactococcal Isolates, and the Discovery of a Novel Bacteriocin, Lactococcin Z. Probiotics and Antimicrobial Proteins, 2015, 7, 222-231.	3.9	12
62	Stimulation of d- and l-lactate dehydrogenases transcriptional levels in presenceÂof diammonium hydrogen phosphate resulting to enhanced lactic acidÂproduction by Lactobacillus strain. Journal of Bioscience and Bioengineering, 2017, 124, 674-679.	2.2	12
63	Effect of a Negatively Charged Lipid on Membrane-Lacticin Q Interaction and Resulting Pore Formation. Bioscience, Biotechnology and Biochemistry, 2010, 74, 218-221.	1.3	11
64	Purification, amino acid sequence, and characterization of bacteriocin GA15, a novel class IIa bacteriocin secreted by Lactiplantibacillus plantarum GCNRC_GA15. International Journal of Biological Macromolecules, 2022, 213, 651-662.	7.5	11
65	Non arbon loss longâ€ŧerm continuous lactic acid production from mixed sugars using thermophilic Enterococcus faecium QU 50. Biotechnology and Bioengineering, 2020, 117, 1673-1683.	3.3	10
66	Molecular characterization of the genes involved in the secretion and immunity of lactococcin Q, a two-peptide bacteriocin produced by Lactococcus lactis QU 4. Microbiology (United Kingdom), 2015, 161, 2069-2078.	1.8	10
67	Nutrition-adaptive control of multiple-bacteriocin production by <i>Weissella hellenica</i> QU 13. Journal of Applied Microbiology, 2016, 120, 70-79.	3.1	9
68	Two-Component Systems Involved in Susceptibility to Nisin A in Streptococcus pyogenes. Applied and Environmental Microbiology, 2016, 82, 5930-5939.	3.1	9
69	ATPase activity regulation by leader peptide processing of ABC transporter maturation and secretion protein, NukT, for lantibiotic nukacin ISK-1. Applied Microbiology and Biotechnology, 2018, 102, 763-772.	3.6	8
70	Mosaic Cooperativity in Slow Polypeptide Topological Isomerization Revealed by Residue-Specific NMR Thermodynamic Analysis. Journal of Physical Chemistry Letters, 2020, 11, 1934-1939.	4.6	8
71	Transition and regulation mechanism of bacterial biota in Kishu saba-narezushi (mackerel narezushi) during its fermentation step. Journal of Bioscience and Bioengineering, 2021, 132, 606-612.	2.2	8
72	Protection of gut microbiome from antibiotics: development of a vancomycin-specific adsorbent with high adsorption capacity. Bioscience of Microbiota, Food and Health, 2020, 39, 128-136.	1.8	8

#	Article	IF	CITATIONS
73	Mechanistic Insight into Yeast Bloom in a Lactic Acid Bacteria Relaying-Community in the Start of Sourdough Microbiota Evolution. Microbiology Spectrum, 2021, 9, e0066221.	3.0	8
74	LiaRS reporter assay: A simple tool to identify lipid II binding moieties in lantibiotic nukacin ISK-1. Journal of Bioscience and Bioengineering, 2017, 123, 398-401.	2.2	7
75	Lowering effect of viable <i>Pediococcus pentosaceus</i> QU 19 on the rise in postprandial glucose. Bioscience of Microbiota, Food and Health, 2020, 39, 57-64.	1.8	6
76	Generation and Characterization of Novel Bioactive Peptides from Fish and Beef Hydrolysates. Applied Sciences (Switzerland), 2021, 11, 10452.	2.5	5
77	Transcriptional regulation of xylose utilization in Enterococcus mundtii QU 25. RSC Advances, 2015, 5, 93283-93292.	3.6	4
78	Identification and characterization of bacteriocin biosynthetic gene clusters found in multiple bacteriocins producing Lactiplantibacillus plantarum PUK6. Journal of Bioscience and Bioengineering, 2022, 133, 444-451.	2.2	4
79	Relation between cellâ€bound exopolysaccharide production via plasmidâ€encoded genes and rugose colony morphology in the probiotic Lactobacillus brevis KB290. Animal Science Journal, 2019, 90, 1575-1580.	1.4	3
80	Molecular characterization of the possible regulation of multiple bacteriocin production through a three-component regulatory system in Enterococcus faecium NKR-5-3. Journal of Bioscience and Bioengineering, 2021, 131, 131-138.	2.2	3
81	Transcriptome profile of carbon catabolite repression in an efficient l-(+)-lactic acid-producing bacterium Enterococcus mundtii QU25 grown in media with combinations of cellobiose, xylose, and glucose. PLoS ONE, 2020, 15, e0242070.	2.5	3
82	Characterization of the Biosynthetic Gene Cluster of Enterocin F4-9, a Glycosylated Bacteriocin. Microorganisms, 2021, 9, 2276.	3.6	3
83	Processing and secretion of non-cognate bacteriocins by EnkT, an ABC transporter from a multiple-bacteriocin producer, Enterococcus faecium NKR-5-3. Journal of Bioscience and Bioengineering, 2020, 130, 596-603.	2.2	2
84	Characterization of multiple bacteriocin-producing <i>Lactiplantibacillus plantarum</i> PUK6 isolated from <i>misozuke-tofu</i> . Food Science and Technology Research, 2022, 28, .	0.6	2
85	Screening and applications of bacteriocins from lactic acid bacteria . Japanese Journal of Lactic Acid Bacteria, 2014, 25, 24-33.	0.1	1
86	Constitutive expression of phosphoketolase, a key enzyme for metabolic shift from homo- to heterolactic fermentation in <i>Enterococcus mundtii</i> QU 25. Bioscience of Microbiota, Food and Health, 2019, 38, 111-114.	1.8	1
87	Critical fermentation factors that influence the production of multiple bacteriocins of Enterococcus faecium NKR-5-3. Annals of Tropical Research, 2020, , 71-84.	0.2	1
88	Improved Purification and Structural Determination of Enterocin B from <i>Enterococcus faecium</i> WHE 81. Japanese Journal of Lactic Acid Bacteria, 2000, 10, 103-109.	0.1	0
89	Optimization of fermentation conditions for high L-lactic acid production from cellobiose by entercoccus mundtii QU 25: Impact of pH control and temperature on cell growth and changes in metabolites. , 2010, , .		0
90	Complete Genome Sequence of Enterococcus faecium QU50, a Thermophilic Lactic Acid Bacterium Capable of Metabolizing Xylose. Microbiology Resource Announcements, 2019, 8, .	0.6	0

#	Article	IF	CITATIONS
91	Functional analysis of biosynthetic genes for bacteriocins. Japanese Journal of Lactic Acid Bacteria, 2019, 30, 18-26.	0.1	0