
Eyal Gottlieb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7070878/publications.pdf Version: 2024-02-01

EVAL COTTLIER

#	Article	IF	CITATIONS
1	Comparative Analysis of the APOL1 Variants in the Genetic Landscape of Renal Carcinoma Cells. Cancers, 2022, 14, 733.	3.7	2
2	Analysis of cellular water content in T cells reveals a switch from slow metabolic water gain to rapid water influx prior to cell division. Journal of Biological Chemistry, 2022, 298, 101795.	3.4	6
3	Induction of glutathione biosynthesis by glycine-based treatment mitigates atherosclerosis. Redox Biology, 2022, 52, 102313.	9.0	15
4	Depressed βâ€adrenergic inotropic responsiveness and intracellular calcium handling abnormalities in Duchenne Muscular Dystrophy patients' induced pluripotent stem cell–derived cardiomyocytes. Journal of Cellular and Molecular Medicine, 2021, 25, 3922-3934.	3.6	6
5	P014 Untargeted serum metabolome in longitudinal Crohn's Disease (CD) cohort enrolled during remission shows strong individualized signature and CD-associated signals that are maintained also in patients who normalized their fecal calprotectin. Journal of Crohn's and Colitis, 2021, 15, S135-S135.	1.3	0
6	Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nature Communications, 2021, 12, 3208.	12.8	98
7	PAX8 plays an essential antiapoptotic role in uterine serous papillary cancer. Oncogene, 2021, 40, 5275-5285.	5.9	5
8	Host autophagy mediates organ wasting and nutrient mobilization for tumor growth. EMBO Journal, 2021, 40, e107336.	7.8	25
9	Investigating LMNA-Related Dilated Cardiomyopathy Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 7874.	4.1	7
10	Disrupting Mitochondrial Electron Transfer Chain Complex I Decreases Immune Checkpoints in Murine and Human Acute Myeloid Leukemic Cells. Cancers, 2021, 13, 3499.	3.7	10
11	Physiological impact of inÂvivo stable isotope tracing on cancer metabolism. Molecular Metabolism, 2021, 53, 101294.	6.5	9
12	The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer. Nature Genetics, 2021, 53, 16-26.	21.4	114
13	Comprehensive Analysis of 13C6 Glucose Fate in the Hypoxia-Tolerant Blind Mole Rat Skin Fibroblasts. Metabolites, 2021, 11, 734.	2.9	6
14	Glutamine Homeostasis and Its Role in the Adaptive Strategies of the Blind Mole Rat, Spalax. Metabolites, 2021, 11, 755.	2.9	7
15	Metabolic adaptation of acute lymphoblastic leukemia to the central nervous system microenvironment depends on stearoyl-CoA desaturase. Nature Cancer, 2020, 1, 998-1009.	13.2	36
16	Mind your media. Nature Metabolism, 2020, 2, 1369-1372.	11.9	34
17	Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Science Translational Medicine, 2020, 12, .	12.4	122
18	Restraining colorectal cancer with αKG. Nature Cancer, 2020, 1, 267-269.	13.2	0

#	Article	IF	CITATIONS
19	Tracing Nutrient Flux Following Monocarboxylate Transporter-1 Inhibition with AZD3965. Cancers, 2020, 12, 1703.	3.7	8
20	MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer. British Journal of Cancer, 2020, 122, 868-884.	6.4	57
21	Bioenergetic and metabolic impairments in Duchenne Muscular Dystrophy (DMD) patients' iPSC-derived cardiomyocytes. European Heart Journal, 2020, 41, .	2.2	1
22	Systemic hypoxia inhibits T cell response by limiting mitobiogenesis via matrix substrate-level phosphorylation arrest. ELife, 2020, 9, .	6.0	9
23	Abstract 14072: Bioenergetic and Metabolic Impairments in Duchenne Muscular Dystrophy (DMD) Patients' Induced Pluripotent Stem Cell-derived Cardiomyocytes (iPSC-CMs). Circulation, 2020, 142, .	1.6	0
24	Melanoma Metabolism. , 2019, , 99-122.		0
25	SIRT6 Promotes Hepatic Beta-Oxidation via Activation of PPARα. Cell Reports, 2019, 29, 4127-4143.e8.	6.4	68
26	Alcohol-derived acetate modulates brain function. Nature Metabolism, 2019, 1, 1036-1037.	11.9	3
27	KRAS4A directly regulates hexokinase 1. Nature, 2019, 576, 482-486.	27.8	129
28	Targeting quiescent leukemic stem cells using second generation autophagy inhibitors. Leukemia, 2019, 33, 981-994.	7.2	99
29	Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Science Advances, 2019, 5, eaau7314.	10.3	249
30	3D Growth of Cancer Cells Elicits Sensitivity to Kinase Inhibitors but Not Lipid Metabolism Modifiers. Molecular Cancer Therapeutics, 2019, 18, 376-388.	4.1	17
31	Melanoma Metabolism. , 2019, , 1-24.		1
32	RAS Regulates the Transition from Naive to Primed Pluripotent Stem Cells. Stem Cell Reports, 2018, 10, 1088-1101.	4.8	27
33	Auto-Commentary on: "Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells― Molecular and Cellular Oncology, 2018, 5, e1403532.	0.7	2
34	Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress. Nature Communications, 2018, 9, 1581.	12.8	178
35	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
36	Harnessing synthetic lethality to predict the response to cancer treatment. Nature Communications, 2018, 9, 2546.	12.8	97

#	Article	IF	CITATIONS
37	Metabolism: The Sweet Spot in Melanoma Precision Medicine?. , 2018, , 1-24.		0
38	Abstract A188: Harnessing synthetic lethality to predict the response to cancer treatments. , 2018, , .		0
39	Abstract 1441: MYC expression promotes lipid metabolism and metabolic plasticity in human mammary epithelial cells. , 2018, , .		0
40	Acetate Recapturing by Nuclear Acetyl-CoA Synthetase 2 Prevents Loss of Histone Acetylation during Oxygen and Serum Limitation. Cell Reports, 2017, 18, 647-658.	6.4	202
41	One carbon, many roads. Cell Death and Differentiation, 2017, 24, 193-194.	11.2	3
42	Altered metabolic landscape in <scp>IDH</scp> â€mutant gliomasÂaffects phospholipid, energy, and oxidative stress pathways. EMBO Molecular Medicine, 2017, 9, 1681-1695.	6.9	111
43	Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nature Medicine, 2017, 23, 1234-1240.	30.7	382
44	PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling. ELife, 2017, 6, .	6.0	82
45	In Memory of Marcos Vidal (1974-2016). DMM Disease Models and Mechanisms, 2016, 9, 233.	2.4	1
46	A rapid method for quantifying free and bound acetate based on alkylation and GC-MS analysis. Cancer & Metabolism, 2016, 4, 17.	5.0	21
47	Grainyhead-like 2 Reverses the Metabolic Changes Induced by the Oncogenic Epithelial–Mesenchymal Transition: Effects on Anoikis. Molecular Cancer Research, 2016, 14, 528-538.	3.4	35
48	ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells. Autophagy, 2016, 12, 936-948.	9.1	84
49	Friendly neighbours feed tumour cells. Nature, 2016, 536, 401-402.	27.8	17
50	Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature, 2016, 537, 544-547.	27.8	443
51	The metabolic fate of acetate in cancer. Nature Reviews Cancer, 2016, 16, 708-717.	28.4	229
52	Cancer metabolism at a glance. Journal of Cell Science, 2016, 129, 3367-3373.	2.0	176
53	Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell, 2016, 167, 457-470.e13.	28.9	1,396
54	Serine one-carbon catabolism with formate overflow. Science Advances, 2016, 2, e1601273.	10.3	128

#	Article	IF	CITATIONS
55	Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer & Metabolism, 2016, 4, 6.	5.0	186
56	Anti-cancer effects of vitamin C revisited. Cell Research, 2016, 26, 269-270.	12.0	51
5 7	Defining functional classes of Barth syndrome mutation in humans. Human Molecular Genetics, 2016, 25, 1754-1770.	2.9	53
58	The Nurture of Tumors Can Drive Their Metabolic Phenotype. Cell Metabolism, 2016, 23, 391-392.	16.2	15
59	Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells. Molecular Oncology, 2016, 10, 73-84.	4.6	129
60	The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth. Oncotarget, 2016, 7, 37103-37120.	1.8	32
61	Modeling cancer metabolism on a genome scale. Molecular Systems Biology, 2015, 11, 817.	7.2	152
62	Analysis of Cell Metabolism Using LC-MS and Isotope Tracers. Methods in Enzymology, 2015, 561, 171-196.	1.0	146
63	Mouse Tafazzin Is Required for Male Germ Cell Meiosis and Spermatogenesis. PLoS ONE, 2015, 10, e0131066.	2.5	15
64	Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death and Disease, 2015, 6, e1749-e1749.	6.3	47
65	Cancer and metabolism: Why should we care?. Seminars in Cell and Developmental Biology, 2015, 43, 1-2.	5.0	2
66	Acetyl-CoA Synthetase 2 Promotes Acetate Utilization and Maintains Cancer Cell Growth under Metabolic Stress. Cancer Cell, 2015, 27, 57-71.	16.8	596
67	Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nature Communications, 2015, 6, 6001.	12.8	208
68	Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability. Molecular and Cellular Proteomics, 2015, 14, 621-634.	3.8	85
69	A roadmap for interpreting 13 C metabolite labeling patterns from cells. Current Opinion in Biotechnology, 2015, 34, 189-201.	6.6	513
70	Oncometabolites: tailoring our genes. FEBS Journal, 2015, 282, 2796-2805.	4.7	112
71	Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartateÂbiosynthesis. Nature Cell Biology, 2015, 17, 1317-1326.	10.3	226
72	Research into cancer metabolomics: Towards a clinical metamorphosis. Seminars in Cell and Developmental Biology, 2015, 43, 52-64.	5.0	36

#	Article	IF	CITATIONS
73	Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nature Cell Biology, 2015, 17, 1556-1568.	10.3	423
74	Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathologica, 2015, 129, 115-131.	7.7	122
75	IN SITU METABOLIC PROFILING SHEDS LIGHT ON OXIDATIVE STRESS PATHWAYS IN IDH1 MUTANT OLIGODENDROGLIOMA. Neuro-Oncology, 2014, 16, iii11-iii11.	1.2	0
76	Predicting Cancer-Specific Vulnerability via Data-Driven Detection of Synthetic Lethality. Cell, 2014, 158, 1199-1209.	28.9	249
77	Clucose and Clutamine Metabolism Regulate Human Hematopoietic Stem Cell Lineage Specification. Cell Stem Cell, 2014, 15, 169-184.	11.1	226
78	Preclinical Evaluation of 3- ¹⁸ F-Fluoro-2,2-Dimethylpropionic Acid as an Imaging Agent for Tumor Detection. Journal of Nuclear Medicine, 2014, 55, 1506-1512.	5.0	22
79	Acetyl-coA synthetase 2 promotes acetate utilization and maintains cell growth under metabolic stress. Cancer & Metabolism, 2014, 2, .	5.0	4
80	Glucose and Glutamine Metabolism Regulate Human Hematopoietic Stem Cell Lineage Specification. Cell Stem Cell, 2014, 15, 666-668.	11.1	1
81	Reversed argininosuccinate lyase activity in fumarate hydratase-deficient cancer cells. Cancer & Metabolism, 2013, 1, 12.	5.0	87
82	mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation. Cell Metabolism, 2013, 18, 698-711.	16.2	647
83	p53 status determines the role of autophagy in pancreatic tumour development. Nature, 2013, 504, 296-300.	27.8	614
84	Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature, 2013, 493, 542-546.	27.8	773
85	Barth syndrome: Cellular compensation of mitochondrial dysfunction and apoptosis inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1194-1206.	3.8	140
86	Succinate is an inflammatory signal that induces IL-1Î ² through HIF-1α. Nature, 2013, 496, 238-242.	27.8	2,845
87	A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature, 2013, 498, 109-112.	27.8	517
88	Extracellular Adenosine Sensing—A Metabolic Cell Death Priming Mechanism Downstream of p53. Molecular Cell, 2013, 50, 394-406.	9.7	46
89	HIF-independent role of prolyl hydroxylases in the cellular response to amino acids. Oncogene, 2013, 32, 4549-4556.	5.9	106
90	Caspase-8 Binding to Cardiolipin in Giant Unilamellar Vesicles Provides a Functional Docking Platform for Bid. PLoS ONE, 2013, 8, e55250.	2.5	24

#	Article	IF	CITATIONS
91	Glutaminolysis Activates Rag-mTORC1 Signaling. Molecular Cell, 2012, 47, 349-358.	9.7	563
92	PGAMgnam Style: A Glycolytic Switch Controls Biosynthesis. Cancer Cell, 2012, 22, 565-566.	16.8	23
93	Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. Trends in Biochemical Sciences, 2012, 37, 309-316.	7.5	224
94	Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature, 2012, 491, 458-462.	27.8	519
95	Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death and Differentiation, 2012, 19, 107-120.	11.2	2,144
96	The music of lipids: How lipid composition orchestrates cellular behaviour. Acta Oncológica, 2012, 51, 301-310.	1.8	41
97	Metabolic Profiling of Hypoxic Cells Revealed a Catabolic Signature Required for Cell Survival. PLoS ONE, 2011, 6, e24411.	2.5	150
98	Predicting selective drug targets in cancer through metabolic networks. Molecular Systems Biology, 2011, 7, .	7.2	48
99	p53 guards the metabolic pathway less travelled. Nature Cell Biology, 2011, 13, 195-197.	10.3	22
100	BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane. Cell Death and Differentiation, 2011, 18, 538-548.	11.2	146
101	Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature, 2011, 477, 225-228.	27.8	433
102	Inborn and acquired metabolic defects in cancer. Journal of Molecular Medicine, 2011, 89, 213-220.	3.9	132
103	Predicting selective drug targets in cancer through metabolic networks. Molecular Systems Biology, 2011, 7, 501.	7.2	418
104	Genome-Scale Metabolic Modeling Elucidates the Role of Proliferative Adaptation in Causing the Warburg Effect. PLoS Computational Biology, 2011, 7, e1002018.	3.2	201
105	HIF prolyl hydroxylase-3 mediates alpha-ketoglutarate-induced apoptosis and tumor suppression. Journal of Molecular Medicine, 2010, 88, 839-849.	3.9	63
106	IDH1 Mutations in Gliomas: When an Enzyme Loses Its Grip. Cancer Cell, 2010, 17, 7-9.	16.8	63
107	Targeting metabolic transformation for cancer therapy. Nature Reviews Cancer, 2010, 10, 267-277.	28.4	969
108	p53 Regulation of Metabolic Pathways. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001040-a001040.	5.5	158

#	Article	IF	CITATIONS
109	Mitochondria in cancer: Not just innocent bystanders. Seminars in Cancer Biology, 2009, 19, 4-11.	9.6	230
110	Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective. Current Opinion in Cell Biology, 2009, 21, 885-893.	5.4	49
111	The fat and the furious. Nature, 2009, 461, 44-45.	27.8	19
112	Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene, 2009, 28, 4009-4021.	5.9	108
113	Metabolic transformation in cancer. Carcinogenesis, 2009, 30, 1269-1280.	2.8	206
114	Prolyl hydroxylases as regulators of cell metabolism. Biochemical Society Transactions, 2009, 37, 291-294.	3.4	79
115	Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2022-2031.	2.6	222
116	Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. Journal of Cell Biology, 2008, 183, 681-696.	5.2	258
117	Cell-Permeating α-Ketoglutarate Derivatives Alleviate Pseudohypoxia in Succinate Dehydrogenase-Deficient Cells. Molecular and Cellular Biology, 2007, 27, 3282-3289.	2.3	339
118	Cardiolipin: Setting the beat of apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 877-885.	4.9	267
119	Redox stress is not essential for the pseudo-hypoxic phenotype of succinate dehydrogenase deficient cells. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 567-572.	1.0	44
120	TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis. Cell, 2006, 126, 107-120.	28.9	1,717
121	OPA1 and PARL Keep a Lid on Apoptosis. Cell, 2006, 126, 27-29.	28.9	48
122	Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene, 2006, 25, 4675-4682.	5.9	596
123	Mitochondrial tumour suppressors: a genetic and biochemical update. Nature Reviews Cancer, 2005, 5, 857-866.	28.4	585
124	Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell, 2005, 7, 77-85.	16.8	1,764
125	Mitochondria-derived Reactive Oxygen Species Mediate Blue Light–induced Death of Retinal Pigment Epithelial Cells¶. Photochemistry and Photobiology, 2004, 79, 470.	2.5	210
126	Mitochondriaâ€derived Reactive Oxygen Species Mediate Blue Lightâ€induced Death of Retinal Pigment Epithelial Cells [¶] . Photochemistry and Photobiology, 2004, 79, 470-475.	2.5	14

#	Article	IF	CITATIONS
127	Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death and Differentiation, 2003, 10, 709-717.	11.2	615
128	Targeting the Mitochondria to Enhance Tumor Suppression. , 2003, 223, 543-554.		12
129	Mitochondrial respiratory control is lost during growth factor deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12801-12806.	7.1	71
130	A Fly with an Ointment: Bcl-2 as an Anti-Mutator in Humans. Cancer Biology and Therapy, 2002, 1, 45-46.	3.4	20
131	Bcl-x _L Prevents the Initial Decrease in Mitochondrial Membrane Potential and Subsequent Reactive Oxygen Species Production during Tumor Necrosis Factor Alpha-Induced Apoptosis. Molecular and Cellular Biology, 2000, 20, 5680-5689.	2.3	312
132	p53 facilitates pRb cleavage in IL-3-deprived cells: novel pro-apoptotic activity of p53. EMBO Journal, 1998, 17, 3587-3596.	7.8	67
133	Transgenic mouse model for studying the transcriptional activity of the p53 protein: age- and tissue-dependent changes in radiation-induced activation during embryogenesis. EMBO Journal, 1997, 16, 1381-1390.	7.8	152
134	p53 Plays a Regulatory Role in Differentiation and Apoptosis of Central Nervous System-Associated Cells. Molecular and Cellular Biology, 1996, 16, 5178-5185.	2.3	194
135	P53-Mediated Apoptosis. , 1996, , 83-101.		1
136	Relationship of sequence-specific transactivation and p53-regulated apoptosis in interleukin 3-dependent hematopoietic cells. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 1996, 7, 301-10.	0.8	10
137	Direct involvement of p53 in programmed cell death of oligodendrocytes EMBO Journal, 1995, 14, 1136-1144.	7.8	81
138	Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3-dependent hematopoietic cells following IL-3 withdrawal EMBO Journal, 1994, 13, 1368-1374.	7.8	148
139	Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential Genes and Development, 1994, 8, 1739-1749.	5.9	281
140	Targets for Transcriptional Activation by Wild-type p53: Endogenous Retroviral LTR, Immunoglobulin-like Promoter, and an Internal Promoter of the mdm2 Gene. Cold Spring Harbor Symposia on Quantitative Biology, 1994, 59, 225-235.	1.1	8
141	Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3-dependent hematopoietic cells following IL-3 withdrawal. EMBO Journal, 1994, 13, 1368-74.	7.8	64
142	Simian virus 40 can overcome the antiproliferative effect of wild-type p53 in the absence of stable large T antigen-p53 binding. Journal of Virology, 1991, 65, 4160-4168.	3.4	27