
Eyal Gottlieb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7070878/publications.pdf Version: 2024-02-01

EVAL COTTUER

#	Article	IF	CITATIONS
1	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
2	Succinate is an inflammatory signal that induces IL-1Î ² through HIF-1α. Nature, 2013, 496, 238-242.	27.8	2,845
3	Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death and Differentiation, 2012, 19, 107-120.	11.2	2,144
4	Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF- $\hat{l}\pm$ prolyl hydroxylase. Cancer Cell, 2005, 7, 77-85.	16.8	1,764
5	TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis. Cell, 2006, 126, 107-120.	28.9	1,717
6	Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell, 2016, 167, 457-470.e13.	28.9	1,396
7	Targeting metabolic transformation for cancer therapy. Nature Reviews Cancer, 2010, 10, 267-277.	28.4	969
8	Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature, 2013, 493, 542-546.	27.8	773
9	mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation. Cell Metabolism, 2013, 18, 698-711.	16.2	647
10	Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death and Differentiation, 2003, 10, 709-717.	11.2	615
11	p53 status determines the role of autophagy in pancreatic tumour development. Nature, 2013, 504, 296-300.	27.8	614
12	Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene, 2006, 25, 4675-4682.	5.9	596
13	Acetyl-CoA Synthetase 2 Promotes Acetate Utilization and Maintains Cancer Cell Growth under Metabolic Stress. Cancer Cell, 2015, 27, 57-71.	16.8	596
14	Mitochondrial tumour suppressors: a genetic and biochemical update. Nature Reviews Cancer, 2005, 5, 857-866.	28.4	585
15	Glutaminolysis Activates Rag-mTORC1 Signaling. Molecular Cell, 2012, 47, 349-358.	9.7	563
16	Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature, 2012, 491, 458-462.	27.8	519
17	A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature, 2013, 498, 109-112.	27.8	517
18	A roadmap for interpreting 13 C metabolite labeling patterns from cells. Current Opinion in Biotechnology, 2015, 34, 189-201.	6.6	513

#	Article	IF	CITATIONS
19	Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature, 2016, 537, 544-547.	27.8	443
20	Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature, 2011, 477, 225-228.	27.8	433
21	Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nature Cell Biology, 2015, 17, 1556-1568.	10.3	423
22	Predicting selective drug targets in cancer through metabolic networks. Molecular Systems Biology, 2011, 7, 501.	7.2	418
23	Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nature Medicine, 2017, 23, 1234-1240.	30.7	382
24	Cell-Permeating α-Ketoglutarate Derivatives Alleviate Pseudohypoxia in Succinate Dehydrogenase-Deficient Cells. Molecular and Cellular Biology, 2007, 27, 3282-3289.	2.3	339
25	Bcl-x _L Prevents the Initial Decrease in Mitochondrial Membrane Potential and Subsequent Reactive Oxygen Species Production during Tumor Necrosis Factor Alpha-Induced Apoptosis. Molecular and Cellular Biology, 2000, 20, 5680-5689.	2.3	312
26	Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential Genes and Development, 1994, 8, 1739-1749.	5.9	281
27	Cardiolipin: Setting the beat of apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 877-885.	4.9	267
28	Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. Journal of Cell Biology, 2008, 183, 681-696.	5.2	258
29	Predicting Cancer-Specific Vulnerability via Data-Driven Detection of Synthetic Lethality. Cell, 2014, 158, 1199-1209.	28.9	249
30	Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Science Advances, 2019, 5, eaau7314.	10.3	249
31	Mitochondria in cancer: Not just innocent bystanders. Seminars in Cancer Biology, 2009, 19, 4-11.	9.6	230
32	The metabolic fate of acetate in cancer. Nature Reviews Cancer, 2016, 16, 708-717.	28.4	229
33	Glucose and Glutamine Metabolism Regulate Human Hematopoietic Stem Cell Lineage Specification. Cell Stem Cell, 2014, 15, 169-184.	11.1	226
34	Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartateÂbiosynthesis. Nature Cell Biology, 2015, 17, 1317-1326.	10.3	226
35	Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. Trends in Biochemical Sciences, 2012, 37, 309-316.	7.5	224
36	Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2022-2031.	2.6	222

#	Article	IF	CITATIONS
37	Mitochondria-derived Reactive Oxygen Species Mediate Blue Light–induced Death of Retinal Pigment Epithelial Cells¶. Photochemistry and Photobiology, 2004, 79, 470.	2.5	210
38	Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nature Communications, 2015, 6, 6001.	12.8	208
39	Metabolic transformation in cancer. Carcinogenesis, 2009, 30, 1269-1280.	2.8	206
40	Acetate Recapturing by Nuclear Acetyl-CoA Synthetase 2 Prevents Loss of Histone Acetylation during Oxygen and Serum Limitation. Cell Reports, 2017, 18, 647-658.	6.4	202
41	Genome-Scale Metabolic Modeling Elucidates the Role of Proliferative Adaptation in Causing the Warburg Effect. PLoS Computational Biology, 2011, 7, e1002018.	3.2	201
42	p53 Plays a Regulatory Role in Differentiation and Apoptosis of Central Nervous System-Associated Cells. Molecular and Cellular Biology, 1996, 16, 5178-5185.	2.3	194
43	Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer & Metabolism, 2016, 4, 6.	5.0	186
44	Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress. Nature Communications, 2018, 9, 1581.	12.8	178
45	Cancer metabolism at a glance. Journal of Cell Science, 2016, 129, 3367-3373.	2.0	176
46	p53 Regulation of Metabolic Pathways. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001040-a001040.	5.5	158
47	Transgenic mouse model for studying the transcriptional activity of the p53 protein: age- and tissue-dependent changes in radiation-induced activation during embryogenesis. EMBO Journal, 1997, 16, 1381-1390.	7.8	152
48	Modeling cancer metabolism on a genome scale. Molecular Systems Biology, 2015, 11, 817.	7.2	152
49	Metabolic Profiling of Hypoxic Cells Revealed a Catabolic Signature Required for Cell Survival. PLoS ONE, 2011, 6, e24411.	2.5	150
50	Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3-dependent hematopoietic cells following IL-3 withdrawal EMBO Journal, 1994, 13, 1368-1374.	7.8	148
51	BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane. Cell Death and Differentiation, 2011, 18, 538-548.	11.2	146
52	Analysis of Cell Metabolism Using LC-MS and Isotope Tracers. Methods in Enzymology, 2015, 561, 171-196.	1.0	146
53	Barth syndrome: Cellular compensation of mitochondrial dysfunction and apoptosis inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1194-1206.	3.8	140
54	Inborn and acquired metabolic defects in cancer. Journal of Molecular Medicine, 2011, 89, 213-220.	3.9	132

#	Article	IF	CITATIONS
55	Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells. Molecular Oncology, 2016, 10, 73-84.	4.6	129
56	KRAS4A directly regulates hexokinase 1. Nature, 2019, 576, 482-486.	27.8	129
57	Serine one-carbon catabolism with formate overflow. Science Advances, 2016, 2, e1601273.	10.3	128
58	Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathologica, 2015, 129, 115-131.	7.7	122
59	Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Science Translational Medicine, 2020, 12, .	12.4	122
60	The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer. Nature Genetics, 2021, 53, 16-26.	21.4	114
61	Oncometabolites: tailoring our genes. FEBS Journal, 2015, 282, 2796-2805.	4.7	112
62	Altered metabolic landscape in <scp>IDH</scp> â€nutant gliomasÂaffects phospholipid, energy, and oxidative stress pathways. EMBO Molecular Medicine, 2017, 9, 1681-1695.	6.9	111
63	Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene, 2009, 28, 4009-4021.	5.9	108
64	HIF-independent role of prolyl hydroxylases in the cellular response to amino acids. Oncogene, 2013, 32, 4549-4556.	5.9	106
65	Targeting quiescent leukemic stem cells using second generation autophagy inhibitors. Leukemia, 2019, 33, 981-994.	7.2	99
66	Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nature Communications, 2021, 12, 3208.	12.8	98
67	Harnessing synthetic lethality to predict the response to cancer treatment. Nature Communications, 2018, 9, 2546.	12.8	97
68	Reversed argininosuccinate lyase activity in fumarate hydratase-deficient cancer cells. Cancer & Metabolism, 2013, 1, 12.	5.0	87
69	Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability. Molecular and Cellular Proteomics, 2015, 14, 621-634.	3.8	85
70	ATC7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells. Autophagy, 2016, 12, 936-948.	9.1	84
71	PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling. ELife, 2017, 6, .	6.0	82
72	Direct involvement of p53 in programmed cell death of oligodendrocytes EMBO Journal, 1995, 14, 1136-1144.	7.8	81

#	Article	IF	CITATIONS
73	Prolyl hydroxylases as regulators of cell metabolism. Biochemical Society Transactions, 2009, 37, 291-294.	3.4	79
74	Mitochondrial respiratory control is lost during growth factor deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12801-12806.	7.1	71
75	SIRT6 Promotes Hepatic Beta-Oxidation via Activation of PPARα. Cell Reports, 2019, 29, 4127-4143.e8.	6.4	68
76	p53 facilitates pRb cleavage in IL-3-deprived cells: novel pro-apoptotic activity of p53. EMBO Journal, 1998, 17, 3587-3596.	7.8	67
77	Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3-dependent hematopoietic cells following IL-3 withdrawal. EMBO Journal, 1994, 13, 1368-74.	7.8	64
78	HIF prolyl hydroxylase-3 mediates alpha-ketoglutarate-induced apoptosis and tumor suppression. Journal of Molecular Medicine, 2010, 88, 839-849.	3.9	63
79	IDH1 Mutations in Gliomas: When an Enzyme Loses Its Grip. Cancer Cell, 2010, 17, 7-9.	16.8	63
80	MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer. British Journal of Cancer, 2020, 122, 868-884.	6.4	57
81	Defining functional classes of Barth syndrome mutation in humans. Human Molecular Genetics, 2016, 25, 1754-1770.	2.9	53
82	Anti-cancer effects of vitamin C revisited. Cell Research, 2016, 26, 269-270.	12.0	51
83	Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective. Current Opinion in Cell Biology, 2009, 21, 885-893.	5.4	49
84	OPA1 and PARL Keep a Lid on Apoptosis. Cell, 2006, 126, 27-29.	28.9	48
85	Predicting selective drug targets in cancer through metabolic networks. Molecular Systems Biology, 2011, 7, .	7.2	48
86	Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death and Disease, 2015, 6, e1749-e1749.	6.3	47
87	Extracellular Adenosine Sensing—A Metabolic Cell Death Priming Mechanism Downstream of p53. Molecular Cell, 2013, 50, 394-406.	9.7	46
88	Redox stress is not essential for the pseudo-hypoxic phenotype of succinate dehydrogenase deficient cells. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 567-572.	1.0	44
89	The music of lipids: How lipid composition orchestrates cellular behaviour. Acta Oncológica, 2012, 51, 301-310.	1.8	41
90	Research into cancer metabolomics: Towards a clinical metamorphosis. Seminars in Cell and Developmental Biology, 2015, 43, 52-64.	5.0	36

#	Article	IF	CITATIONS
91	Metabolic adaptation of acute lymphoblastic leukemia to the central nervous system microenvironment depends on stearoyl-CoA desaturase. Nature Cancer, 2020, 1, 998-1009.	13.2	36
92	Grainyhead-like 2 Reverses the Metabolic Changes Induced by the Oncogenic Epithelial–Mesenchymal Transition: Effects on Anoikis. Molecular Cancer Research, 2016, 14, 528-538.	3.4	35
93	Mind your media. Nature Metabolism, 2020, 2, 1369-1372.	11.9	34
94	The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth. Oncotarget, 2016, 7, 37103-37120.	1.8	32
95	RAS Regulates the Transition from Naive to Primed Pluripotent Stem Cells. Stem Cell Reports, 2018, 10, 1088-1101.	4.8	27
96	Simian virus 40 can overcome the antiproliferative effect of wild-type p53 in the absence of stable large T antigen-p53 binding. Journal of Virology, 1991, 65, 4160-4168.	3.4	27
97	Host autophagy mediates organ wasting and nutrient mobilization for tumor growth. EMBO Journal, 2021, 40, e107336.	7.8	25
98	Caspase-8 Binding to Cardiolipin in Giant Unilamellar Vesicles Provides a Functional Docking Platform for Bid. PLoS ONE, 2013, 8, e55250.	2.5	24
99	PGAMgnam Style: A Glycolytic Switch Controls Biosynthesis. Cancer Cell, 2012, 22, 565-566.	16.8	23
100	p53 guards the metabolic pathway less travelled. Nature Cell Biology, 2011, 13, 195-197.	10.3	22
101	Preclinical Evaluation of 3- ¹⁸ F-Fluoro-2,2-Dimethylpropionic Acid as an Imaging Agent for Tumor Detection. Journal of Nuclear Medicine, 2014, 55, 1506-1512.	5.0	22
102	A rapid method for quantifying free and bound acetate based on alkylation and GC-MS analysis. Cancer & Metabolism, 2016, 4, 17.	5.0	21
103	A Fly with an Ointment: Bcl-2 as an Anti-Mutator in Humans. Cancer Biology and Therapy, 2002, 1, 45-46.	3.4	20
104	The fat and the furious. Nature, 2009, 461, 44-45.	27.8	19
105	Friendly neighbours feed tumour cells. Nature, 2016, 536, 401-402.	27.8	17
106	3D Growth of Cancer Cells Elicits Sensitivity to Kinase Inhibitors but Not Lipid Metabolism Modifiers. Molecular Cancer Therapeutics, 2019, 18, 376-388.	4.1	17
107	Mouse Tafazzin Is Required for Male Germ Cell Meiosis and Spermatogenesis. PLoS ONE, 2015, 10, e0131066.	2.5	15
108	The Nurture of Tumors Can Drive Their Metabolic Phenotype. Cell Metabolism, 2016, 23, 391-392.	16.2	15

#	Article	IF	CITATIONS
109	Induction of glutathione biosynthesis by glycine-based treatment mitigates atherosclerosis. Redox Biology, 2022, 52, 102313.	9.0	15
110	Mitochondriaâ€derived Reactive Oxygen Species Mediate Blue Lightâ€induced Death of Retinal Pigment Epithelial Cells [¶] . Photochemistry and Photobiology, 2004, 79, 470-475.	2.5	14
111	Targeting the Mitochondria to Enhance Tumor Suppression. , 2003, 223, 543-554.		12
112	Disrupting Mitochondrial Electron Transfer Chain Complex I Decreases Immune Checkpoints in Murine and Human Acute Myeloid Leukemic Cells. Cancers, 2021, 13, 3499.	3.7	10
113	Relationship of sequence-specific transactivation and p53-regulated apoptosis in interleukin 3-dependent hematopoietic cells. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 1996, 7, 301-10.	0.8	10
114	Physiological impact of inÂvivo stable isotope tracing on cancer metabolism. Molecular Metabolism, 2021, 53, 101294.	6.5	9
115	Systemic hypoxia inhibits T cell response by limiting mitobiogenesis via matrix substrate-level phosphorylation arrest. ELife, 2020, 9, .	6.0	9
116	Tracing Nutrient Flux Following Monocarboxylate Transporter-1 Inhibition with AZD3965. Cancers, 2020, 12, 1703.	3.7	8
117	Targets for Transcriptional Activation by Wild-type p53: Endogenous Retroviral LTR, Immunoglobulin-like Promoter, and an Internal Promoter of the mdm2 Gene. Cold Spring Harbor Symposia on Quantitative Biology, 1994, 59, 225-235.	1.1	8
118	Investigating LMNA-Related Dilated Cardiomyopathy Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 7874.	4.1	7
119	Glutamine Homeostasis and Its Role in the Adaptive Strategies of the Blind Mole Rat, Spalax. Metabolites, 2021, 11, 755.	2.9	7
120	Depressed βâ€adrenergic inotropic responsiveness and intracellular calcium handling abnormalities in Duchenne Muscular Dystrophy patients' induced pluripotent stem cell–derived cardiomyocytes. Journal of Cellular and Molecular Medicine, 2021, 25, 3922-3934.	3.6	6
121	Comprehensive Analysis of 13C6 Glucose Fate in the Hypoxia-Tolerant Blind Mole Rat Skin Fibroblasts. Metabolites, 2021, 11, 734.	2.9	6
122	Analysis of cellular water content in T cells reveals a switch from slow metabolic water gain to rapid water influx prior to cell division. Journal of Biological Chemistry, 2022, 298, 101795.	3.4	6
123	PAX8 plays an essential antiapoptotic role in uterine serous papillary cancer. Oncogene, 2021, 40, 5275-5285.	5.9	5
124	Acetyl-coA synthetase 2 promotes acetate utilization and maintains cell growth under metabolic stress. Cancer & Metabolism, 2014, 2, .	5.0	4
125	One carbon, many roads. Cell Death and Differentiation, 2017, 24, 193-194.	11.2	3
126	Alcohol-derived acetate modulates brain function. Nature Metabolism, 2019, 1, 1036-1037.	11.9	3

#	Article	IF	CITATIONS
127	Cancer and metabolism: Why should we care?. Seminars in Cell and Developmental Biology, 2015, 43, 1-2.	5.0	2
128	Auto-Commentary on: "Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells― Molecular and Cellular Oncology, 2018, 5, e1403532.	0.7	2
129	Comparative Analysis of the APOL1 Variants in the Genetic Landscape of Renal Carcinoma Cells. Cancers, 2022, 14, 733.	3.7	2
130	Glucose and Glutamine Metabolism Regulate Human Hematopoietic Stem Cell Lineage Specification. Cell Stem Cell, 2014, 15, 666-668.	11,1	1
131	In Memory of Marcos Vidal (1974-2016). DMM Disease Models and Mechanisms, 2016, 9, 233.	2.4	1
132	Melanoma Metabolism. , 2019, , 1-24.		1
133	Bioenergetic and metabolic impairments in Duchenne Muscular Dystrophy (DMD) patients' iPSC-derived cardiomyocytes. European Heart Journal, 2020, 41, .	2.2	1
134	P53-Mediated Apoptosis. , 1996, , 83-101.		1
135	IN SITU METABOLIC PROFILING SHEDS LIGHT ON OXIDATIVE STRESS PATHWAYS IN IDH1 MUTANT OLIGODENDROGLIOMA. Neuro-Oncology, 2014, 16, iii11-iii11.	1.2	0
136	Melanoma Metabolism. , 2019, , 99-122.		0
137	Restraining colorectal cancer with αKG. Nature Cancer, 2020, 1, 267-269.	13.2	0
138	P014 Untargeted serum metabolome in longitudinal Crohn's Disease (CD) cohort enrolled during remission shows strong individualized signature and CD-associated signals that are maintained also in patients who normalized their fecal calprotectin. Journal of Crohn's and Colitis, 2021, 15, S135-S135.	1.3	0
139	Metabolism: The Sweet Spot in Melanoma Precision Medicine?. , 2018, , 1-24.		Ο
140	Abstract A188: Harnessing synthetic lethality to predict the response to cancer treatments. , 2018, , .		0
141	Abstract 1441: MYC expression promotes lipid metabolism and metabolic plasticity in human mammary epithelial cells. , 2018, , .		0
142	Abstract 14072: Bioenergetic and Metabolic Impairments in Duchenne Muscular Dystrophy (DMD) Patients' Induced Pluripotent Stem Cell-derived Cardiomyocytes (iPSC-CMs). Circulation, 2020, 142, .	1.6	0