
Michael D Huband

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7070790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activity of the Novel Aminomethylcycline KBP-7072 and Comparators against 1,057 Geographically Diverse Recent Clinical Isolates from the SENTRY Surveillance Program, 2019. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0139721.	3.2	4
2	Elderly versus nonelderly patients with invasive fungal infections: species distribution and antifungal resistance, SENTRY antifungal surveillance program 2017-2019. Diagnostic Microbiology and Infectious Disease, 2022, 102, 115627.	1.8	9
3	Antimicrobial activity of dalbavancin against Gram-positive bacteria isolated from patients hospitalized with bloodstream infection in United States and European medical centers (2018–2020). European Journal of Clinical Microbiology and Infectious Diseases, 2022, 41, 867-873.	2.9	5
4	Surveillance of omadacycline activity tested against clinical isolates from the USA: report from the SENTRY Antimicrobial Surveillance Program, 2019. Journal of Global Antimicrobial Resistance, 2021, 27, 337-351.	2.2	13
5	In vitro activity of KHP-3757 (a novel LpxC inhibitor) and comparator agents against recent and molecularly characterized Pseudomonas aeruginosa isolates from a global surveillance program (2017–2018). Diagnostic Microbiology and Infectious Disease, 2020, 98, 115191.	1.8	2
6	Omadacycline invitro activity against a molecularly characterized collection of clinical isolates with known acquired tetracycline resistance mechanisms. Diagnostic Microbiology and Infectious Disease, 2020, 97, 115054.	1.8	3
7	<i>In Vitro</i> Activity of KBP-7072, a Novel Third-Generation Tetracycline, against 531 Recent Geographically Diverse and Molecularly Characterized Acinetobacter baumannii Species Complex Isolates. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	16
8	Surveillance of Omadacycline Activity Tested against Clinical Isolates from the United States and Europe: Report from the SENTRY Antimicrobial Surveillance Program, 2016 to 2018. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	32
9	Determination of MIC Quality Control Ranges for the Novel Gyrase Inhibitor Zoliflodacin. Journal of Clinical Microbiology, 2019, 57, .	3.9	7
10	1598. Antimicrobial Activity of the Novel β-Lactam Enhancer Combination Cefepime–Zidebactam (WCK-5222) Tested Against Gram-Negative Bacteria Isolated in United States Medical Centers from Patients with Bloodstream Infections. Open Forum Infectious Diseases, 2019, 6, S583-S583.	0.9	0
11	Development of Broth Microdilution MIC and Disk Diffusion Antimicrobial Susceptibility Test Quality Control Ranges for the Combination of Cefepime and the Novel β-Lactamase Inhibitor Enmetazobactam. Journal of Clinical Microbiology, 2019, 57, .	3.9	9
12	Geographic and Temporal Patterns of Antimicrobial Resistance in Pseudomonas aeruginosa Over 20 Years From the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum Infectious Diseases, 2019, 6, S63-S68.	0.9	84
13	Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe: Results from the SENTRY Antimicrobial Surveillance Programme, 2017. Journal of Global Antimicrobial Resistance, 2019, 19, 56-63.	2.2	33
14	Frequency and antimicrobial susceptibility of bacterial isolates from patients hospitalised with community-acquired skin and skin-structure infection in Europe, Asia and Latin America. Journal of Global Antimicrobial Resistance, 2019, 17, 103-108.	2.2	10
15	1445. Antimicrobial Activity of Novel β-Lactamase Inhibitor Combinations Tested against Organisms Causing Complicated Urinary Tract Infections in United States Medical Centers. Open Forum Infectious Diseases, 2019, 6, S527-S528.	0.9	1
16	2217. Frequency and Antimicrobial Susceptibility of Bacteria Isolated from Patients Hospitalized with Pneumonia in US Medical Centers During 2018. Open Forum Infectious Diseases, 2019, 6, S756-S756.	0.9	0
17	1582. Delafloxacin Activity Against Drug-Resistant Streptococcus pneumoniae, Haemophilus influenzae, Haemophilus parainfluenzae, and Moraxella catarrhalis from US Medical Centers (2014–2018). Open Forum Infectious Diseases, 2019, 6, S577-S578.	0.9	2
18	Antimicrobial Activity of Omadacycline Tested against Clinical Bacterial Isolates from Hospitals in Mainland China, Hong Kong, and Taiwan: Results from the SENTRY Antimicrobial Surveillance Program (2013 to 2016). Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	21

#	Article	IF	CITATIONS
19	In vitro activity of meropenem/vaborbactam and characterisation of carbapenem resistance mechanisms among carbapenem-resistant Enterobacteriaceae from the 2015 meropenem/vaborbactam surveillance programme. International Journal of Antimicrobial Agents, 2018, 52, 144-150.	2.5	77
20	Surveillance of tigecycline activity tested against clinical isolates from a global (North America,) Tj ETQq0 0 0 rgBT Agents, 2018, 51, 848-853.	/Overlock 2.5	2 10 Tf 50 70 32
21	Surveillance of Omadacycline Activity Tested against Clinical Isolates from the United States and Europe as Part of the 2016 SENTRY Antimicrobial Surveillance Program. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	59
22	Determination of MIC and disk diffusion quality control guidelines for meropenem–vaborbactam, a novel carbapenem/boronic acid β-lactamase inhibitor combination. Diagnostic Microbiology and Infectious Disease, 2018, 90, 324-328.	1.8	8
23	Assessment of 30/20-Microgram Disk Content versus MIC Results for Ceftazidime-Avibactam Tested against Enterobacteriaceae and Pseudomonas aeruginosa. Journal of Clinical Microbiology, 2018, 56, .	3.9	11
24	Ceftazidime–Avibactam Antimicrobial Activity and Spectrum When Tested Against Gram-negative Organisms From Pediatric Patients. Pediatric Infectious Disease Journal, 2018, 37, 549-554.	2.0	14
25	1363. Sulopenem Activity Against Enterobacteriaceae Isolates From Patients With Urinary Tract Infection or Intra-Abdominal Infection. Open Forum Infectious Diseases, 2018, 5, S417-S417.	0.9	4
26	2373. Evaluation of Delafloxacin Activity and Treatment Outcome for Phase 3 Acute Bacterial Skin and Skin Structure Infection Clinical Trial Anaerobic Isolates. Open Forum Infectious Diseases, 2018, 5, S706-S707.	0.9	0
27	A Systematic Approach to the Selection of the Appropriate Avibactam Concentration for Use with Ceftazidime in Broth Microdilution Susceptibility Testing. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	14
28	Effect of Susceptibility Testing Conditions on the In Vitro Antibacterial Activity of ETX0914. Diagnostic Microbiology and Infectious Disease, 2017, 87, 139-142.	1.8	5
29	Pseudomonas aeruginosa Antimicrobial Susceptibility Results from Four Years (2012 to 2015) of the International Network for Optimal Resistance Monitoring Program in the United States. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	91
30	Surveillance of Omadacycline Activity against Clinical Isolates from a Global Collection (North) Tj ETQq0 0 0 rgBT / Chemotherapy, 2017, 61, .	Overlock 3.2	10 Tf 50 307 56
31	Impact of defined cell envelope mutations in Escherichia coli on the in vitro antibacterial activity of avibactam/β-lactam combinations. International Journal of Antimicrobial Agents, 2017, 49, 437-442.	2.5	3
32	WCK 5222 (Cefepime-Zidebactam) Antimicrobial Activity against Clinical Isolates of Gram-Negative Bacteria Collected Worldwide in 2015. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	63
33	Cefiderocol MIC quality control ranges in iron-depleted cation-adjusted Mueller–Hinton broth using a CLSI M23-A4 multi-laboratory study design. Diagnostic Microbiology and Infectious Disease, 2017, 88, 198-200.	1.8	29
34	Activities of Omadacycline and Comparator Agents against Staphylococcus aureus Isolates from a Surveillance Program Conducted in North America and Europe. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	37
35	Determination of Disk Diffusion and MIC Quality Control Guidelines for High-Dose Cefepime-Tazobactam (WCK 4282), a Novel Antibacterial Combination Consisting of a β-Lactamase Inhibitor and a Fourth-Generation Cephalosporin. Journal of Clinical Microbiology, 2017, 55, 3130-3134.	3.9	2
36	Novel 3-fluoro-6-methoxyquinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3353-3358.	2.2	30

MICHAEL D HUBAND

#	Article	IF	CITATIONS
37	Meropenem-Vaborbactam Tested against Contemporary Gram-Negative Isolates Collected Worldwide during 2014, Including Carbapenem-Resistant, KPC-Producing, Multidrug-Resistant, and Extensively Drug-Resistant Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	141
38	In Vitro Evaluation of Delafloxacin Activity when Tested Against Contemporary community-Acquired Bacterial Respiratory Tract Infection Isolates (2014–2016): Results from the Sentry Antimicrobial Surveillance Program. Open Forum Infectious Diseases, 2017, 4, S369-S369.	0.9	3
39	In Vitro Activity of Omadacycline and Comparator Compounds Against Gram-positive Isolates Collected in the USA During 2016 as Part of a Global Surveillance Program. Open Forum Infectious Diseases, 2017, 4, S374-S374.	0.9	0
40	Molecular Characterization of Fluoroquinolone Resistance Mechanisms in Isolates from the Delafloxacin Acute Bacterial Skin and Skin Structure Infections Clinical Trials. Open Forum Infectious Diseases, 2017, 4, S131-S131.	0.9	0
41	Activity of Delafloxacin When Tested Against Bacterial Surveillance Isolates Collected in the US and Europe During 2014–2016 as Part of a Global Surveillance Program. Open Forum Infectious Diseases, 2017, 4, S373-S374.	0.9	3
42	Activity of Omadacycline When Tested Against Gram-Positive Bacteria Isolated From Patients in the United States During 2015 as Part of a Global Surveillance Program Open Forum Infectious Diseases, 2016, 3, .	0.9	0
43	Antimicrobial Activity of Ceftazidime-Avibactam Tested Against Pseudomonas aeruginosa Isolates from US Hospitals Stratified by Site of Infection: Results From the INFORM Surveillance Program, 2013–2015. Open Forum Infectious Diseases, 2016, 3, .	0.9	0
44	Prevalence of Main Gram-Positive Pathogens Causing Bloodstream Infections in United States Medical Centers (2010–2015) and Analysis of Oritavancin In Vitro Activity. Open Forum Infectious Diseases, 2016, 3, .	0.9	0
45	Ceftazidime-Avibactam Antimicrobial Activity and Spectrum When Tested Against Gram-Negative Organisms From Pediatric Patients: Results From the INFORM Surveillance Program (USA, 2011–2015). Open Forum Infectious Diseases, 2016, 3, .	0.9	0
46	<i>In Vitro</i> Activity of Delafloxacin Tested against Isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6381-6385.	3.2	36
47	<i>In Vitro</i> Activity of Ceftazidime-Avibactam against Contemporary Pseudomonas aeruginosa Isolates from U.S. Medical Centers by Census Region, 2014. Antimicrobial Agents and Chemotherapy, 2016, 60, 2537-2541.	3.2	30
48	Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases. Scientific Reports, 2015, 5, 11827.	3.3	85
49	Characterization of the Novel DNA Gyrase Inhibitor AZD0914: Low Resistance Potential and Lack of Cross-Resistance in Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 2015, 59, 1478-1486.	3.2	74
50	<i>In Vitro</i> Antibacterial Activity of AZD0914, a New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-Positive, Fastidious Gram-Negative, and Atypical Bacteria. Antimicrobial Agents and Chemotherapy, 2015, 59, 467-474.	3.2	67
51	<i>In Vitro</i> Antibacterial Activity of AZD0914 against Human Mycoplasmas and Ureaplasmas. Antimicrobial Agents and Chemotherapy, 2015, 59, 3627-3629.	3.2	20
52	<i>In Vitro</i> Activity of AZD0914, a Novel Bacterial DNA Gyrase/Topoisomerase IV Inhibitor, against Clinically Relevant Gram-Positive and Fastidious Gram-Negative Pathogens. Antimicrobial Agents and Chemotherapy, 2015, 59, 6053-6063.	3.2	18
53	In Vitro Antibacterial Activity of Meropenem/RPX7009, (A Carbapenem/â-lactamase Inhibitor) Tj ETQq1 1 0.78 Urinary Tract Infections (UTI) in the United States. Open Forum Infectious Diseases, 2015, 2, .	4314 rgBT 0.9	/Overlock 10 3
54	<i>In Vitro</i> Activity of AZD0914, a Novel DNA Gyrase Inhibitor, against Chlamydia trachomatis and Chlamydia pneumoniae. Antimicrobial Agents and Chemotherapy, 2014, 58, 7595-7596.	3.2	16

MICHAEL D HUBAND

#	Article	IF	CITATIONS
55	High <i>In Vitro</i> Activity of the Novel Spiropyrimidinetrione AZD0914, a DNA Gyrase Inhibitor, against Multidrug-Resistant Neisseria gonorrhoeae Isolates Suggests a New Effective Option for Oral Treatment of Gonorrhea. Antimicrobial Agents and Chemotherapy, 2014, 58, 5585-5588.	3.2	62
56	Siderophore Receptor-Mediated Uptake of Lactivicin Analogues in Gram-Negative Bacteria. Journal of Medicinal Chemistry, 2014, 57, 3845-3855.	6.4	50
57	Novel quinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2955-2961.	2.2	54
58	Discovery of Dap-3 Polymyxin Analogues for the Treatment of Multidrug-Resistant Gram-Negative Nosocomial Infections. Journal of Medicinal Chemistry, 2013, 56, 5079-5093.	6.4	47
59	Pyridone-Conjugated Monobactam Antibiotics with Gram-Negative Activity. Journal of Medicinal Chemistry, 2013, 56, 5541-5552.	6.4	54
60	Dissemination of a pSCFS3-Like <i>cfr</i> -Carrying Plasmid in Staphylococcus aureus and Staphylococcus epidermidis Clinical Isolates Recovered from Hospitals in Ohio. Antimicrobial Agents and Chemotherapy, 2013, 57, 2923-2928.	3.2	40
61	Novel monobactams utilizing a siderophore uptake mechanism for the treatment of gram-negative infections. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5989-5994.	2.2	17
62	Pyridone Methylsulfone Hydroxamate LpxC Inhibitors for the Treatment of Serious Gram-Negative Infections. Journal of Medicinal Chemistry, 2012, 55, 1662-1670.	6.4	90
63	Potent Inhibitors of LpxC for the Treatment of Gram-Negative Infections. Journal of Medicinal Chemistry, 2012, 55, 914-923.	6.4	100
64	Preparation, Gram-Negative Antibacterial Activity, and Hydrolytic Stability of Novel Siderophore-Conjugated Monocarbam Diols. ACS Medicinal Chemistry Letters, 2011, 2, 385-390.	2.8	57
65	Multicity Outbreak of Linezolidâ€Resistant <i>Staphylococcus epidermidis</i> Associated with Clonal Spread of a <i>cfr</i> â€Containing Strain. Clinical Infectious Diseases, 2010, 51, 796-900.	5.8	87
66	Emergence of linezolid-resistant coagulase-negative Staphylococcus in a cancer centre linked to increased linezolid utilization. Journal of Antimicrobial Chemotherapy, 2010, 65, 2001-2004.	3.0	45
67	A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1737-1742.	7.1	136
68	Synthesis and structure–activity studies of novel homomorpholine oxazolidinone antibacterial agents. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 550-553.	2.2	12
69	Discovery of Azetidinyl Ketolides for the Treatment of Susceptible and Multidrug Resistant Community-Acquired Respiratory Tract Infections. Journal of Medicinal Chemistry, 2009, 52, 7446-7457.	6.4	51
70	Discovery of Antibacterial Biotin Carboxylase Inhibitors by Virtual Screening and Fragment-Based Approaches. ACS Chemical Biology, 2009, 4, 473-483.	3.4	84
71	Synthesis and antibacterial activity of the C-7 side chain of 3-aminoquinazolinediones. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5087-5090.	2.2	21
72	In Vitro Antibacterial Activity of CE-156811, a Novel Analog Derived from Hygromycin A. Antimicrobial Agents and Chemotherapy, 2008, 52, 2663-2666.	3.2	3

MICHAEL D HUBAND

#	Article	IF	CITATIONS
73	In Vitro and In Vivo Activities of PD 0305970 and PD 0326448, New Bacterial Gyrase/Topoisomerase Inhibitors with Potent Antibacterial Activities versus Multidrug-Resistant Gram-Positive and Fastidious Organism Groups. Antimicrobial Agents and Chemotherapy, 2007, 51, 1191-1201.	3.2	70
74	Antibacterial Oxazolidinones Possessing a Novel C-5 Side Chain. (5R)-trans-3-[3-Fluoro-4- (1-oxotetrahydrothiopyran-4-yl)phenyl]-2- oxooxazolidine-5-carboxylic Acid Amide (PF-00422602), a New Lead Compound. Journal of Medicinal Chemistry, 2007, 50, 5886-5889.	6.4	22
75	3-Aminoquinazolinediones as a New Class of Antibacterial Agents Demonstrating Excellent Antibacterial Activity Against Wild-Type and Multidrug Resistant Organisms. Journal of Medicinal Chemistry, 2006, 49, 6435-6438.	6.4	62
76	Activity of clinafloxacin, trovafloxacin, quinupristin/dalfopristin, and other antimicrobial agents versus Staphylococcus aureus isolates with reduced susceptibility to vancomycin. Diagnostic Microbiology and Infectious Disease, 1999, 33, 43-46.	1.8	20
77	The Synthesis, Structure-Activity, and Structure-Side Effect Relationships of a Series of 8-Alkoxy- and 5-Amino-8-alkoxyquinolone Antibacterial Agents. Journal of Medicinal Chemistry, 1995, 38, 4478-4487.	6.4	71
78	In vitro evaluation of cefdinir (FK482), a new oral cephalosporin with enhanced antistaphylococcal activity and β-lactamase stability. Diagnostic Microbiology and Infectious Disease, 1994, 18, 31-39.	1.8	20
79	In vitro activity of sparfloxacin (CI-978, AT-4140, and PD 131501). Diagnostic Microbiology and Infectious Disease, 1991, 14, 403-415.	1.8	16
80	In vitro antibacterial activities of the fluoroquinolones PD 117596, PD 124816, and PD 127391. Diagnostic Microbiology and Infectious Disease, 1991, 14, 245-258.	1.8	32