
Tommy Tsan-Yuk Lam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7070421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine, 2020, 382, 1199-1207.	13.9	12,326
2	<scp>ggtree</scp> : an <scp>r</scp> package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 2017, 8, 28-36.	2.2	2,998
3	Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evolution, 2016, 2, vew007.	2.2	1,638
4	Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature, 2020, 583, 282-285.	13.7	1,453
5	The sequence and de novo assembly of the giant panda genome. Nature, 2010, 463, 311-317.	13.7	1,058
6	Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nature Microbiology, 2020, 5, 1408-1417.	5.9	772
7	Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Eurosurveillance, 2021, 26, .	3.9	584
8	Two Methods for Mapping and Visualizing Associated Data on Phylogeny Using <i>Ggtree</i> . Molecular Biology and Evolution, 2018, 35, 3041-3043.	3.5	535
9	The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature, 2013, 502, 241-244.	13.7	429
10	Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science, 2016, 351, 81-84.	6.0	365
11	Treeio: An R Package for Phylogenetic Tree Input and Output with Richly Annotated and Associated Data. Molecular Biology and Evolution, 2020, 37, 599-603.	3.5	348
12	Phylogeny-Based Evolutionary, Demographical, and Geographical Dissection of North American Type 2 Porcine Reproductive and Respiratory Syndrome Viruses. Journal of Virology, 2010, 84, 8700-8711.	1.5	321
13	Molecular epidemiology of PRRSV: A phylogenetic perspective. Virus Research, 2010, 154, 7-17.	1.1	300
14	Molecular Characterization of the Fecal Microbiota in Patients with Nonalcoholic Steatohepatitis – A Longitudinal Study. PLoS ONE, 2013, 8, e62885.	1.1	266
15	The ever-expanding diversity of porcine reproductive and respiratory syndrome virus. Virus Research, 2010, 154, 18-30.	1.1	263
16	Evolutionary Genetics of Human Enterovirus 71: Origin, Population Dynamics, Natural Selection, and Seasonal Periodicity of the VP1 Gene. Journal of Virology, 2010, 84, 3339-3350.	1.5	211
17	Dissemination, divergence and establishment of H7N9 influenza viruses in China. Nature, 2015, 522, 102-105.	13.7	201
18	Evidence of the Recombinant Origin of a Bat Severe Acute Respiratory Syndrome (SARS)-Like Coronavirus and Its Implications on the Direct Ancestor of SARS Coronavirus. Journal of Virology, 2008, 82, 1819-1826.	1.5	197

Томму Tsan-Yuk Lam

#	Article	IF	CITATIONS
19	The rapidly expanding CRF01_AE epidemic in China is driven by multiple lineages of HIV-1 viruses introduced in the 1990s. Aids, 2013, 27, 1793-1802.	1.0	171
20	Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013. Journal of Virology, 2015, 89, 9920-9931.	1.5	148
21	Large-Scale Comparative Analyses of Tick Genomes Elucidate Their Genetic Diversity and Vector Capacities. Cell, 2020, 182, 1328-1340.e13.	13.5	145
22	Full-Genome Deep Sequencing and Phylogenetic Analysis of Novel Human Betacoronavirus. Emerging Infectious Diseases, 2013, 19, 736-42B.	2.0	131
23	Spatial Dynamics of Human-Origin H1 Influenza A Virus in North American Swine. PLoS Pathogens, 2011, 7, e1002077.	2.1	116
24	Phylogenetic Analysis Reveals a Correlation between the Expansion of Very Virulent Infectious Bursal Disease Virus and Reassortment of Its Genome Segment B. Journal of Virology, 2006, 80, 8503-8509.	1.5	100
25	Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans. Journal of General Virology, 2010, 91, 1058-1062.	1.3	96
26	Global epidemiology of non-influenza RNA respiratory viruses: data gaps and a growing need for surveillance. Lancet Infectious Diseases, The, 2017, 17, e320-e326.	4.6	92
27	Emergence of human infection with Jingmen tick virus in China: A retrospective study. EBioMedicine, 2019, 43, 317-324.	2.7	91
28	Migratory flyway and geographical distance are barriers to the gene flow of influenza virus among North American birds. Ecology Letters, 2012, 15, 24-33.	3.0	86
29	Evolutionary and molecular analysis of the emergent severe fever with thrombocytopenia syndrome virus. Epidemics, 2013, 5, 1-10.	1.5	84
30	Novel Reassortment of Eurasian Avian-Like and Pandemic/2009 Influenza Viruses in Swine: Infectious Potential for Humans. Journal of Virology, 2011, 85, 10432-10439.	1.5	80
31	Effect of probiotic bacteria on the intestinal microbiota in irritable bowel syndrome. Journal of Gastroenterology and Hepatology (Australia), 2013, 28, 1624-1631.	1.4	79
32	Expansion of Genotypic Diversity and Establishment of 2009 H1N1 Pandemic-Origin Internal Genes in Pigs in China. Journal of Virology, 2014, 88, 10864-10874.	1.5	79
33	Sampling bias and incorrect rooting make phylogenetic network tracing of SARS-COV-2 infections unreliable. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12522-12523.	3.3	68
34	Emergence and Evolution of Avian H5N2 Influenza Viruses in Chickens in Taiwan. Journal of Virology, 2014, 88, 5677-5686.	1.5	66
35	Evolutionary and Transmission Dynamics of Reassortant H5N1 Influenza Virus in Indonesia. PLoS Pathogens, 2008, 4, e1000130.	2.1	61
36	Emergence and Evolution of H10 Subtype Influenza Viruses in Poultry in China. Journal of Virology, 2015, 89, 3534-3541.	1.5	61

Томму Тѕал-Үик Цам

#	Article	IF	CITATIONS
37	Molecular Evolution and Intraclade Recombination of Enterovirus D68 during the 2014 Outbreak in the United States. Journal of Virology, 2016, 90, 1997-2007.	1.5	59
38	Evidence for recombination in natural populations of porcine circovirus type 2 in Hong Kong and mainland China. Journal of General Virology, 2007, 88, 1733-1737.	1.3	57
39	Reassortment Events among Swine Influenza A Viruses in China: Implications for the Origin of the 2009 Influenza Pandemic. Journal of Virology, 2011, 85, 10279-10285.	1.5	57
40	Differing Epidemiological Dynamics of Influenza B Virus Lineages in Guangzhou, Southern China, 2009-2010. Journal of Virology, 2013, 87, 12447-12456.	1.5	57
41	Comparison of Mutation Patterns in Full-Genome A/H3N2 Influenza Sequences Obtained Directly from Clinical Samples and the Same Samples after a Single MDCK Passage. PLoS ONE, 2013, 8, e79252.	1.1	57
42	Use of phylogenetics in the molecular epidemiology and evolutionary studies of viral infections. Critical Reviews in Clinical Laboratory Sciences, 2010, 47, 5-49.	2.7	56
43	Phylogeography of the Spring and Fall Waves of the H1N1/09 Pandemic Influenza Virus in the United States. Journal of Virology, 2011, 85, 828-834.	1.5	54
44	Comparative global epidemiology of influenza, respiratory syncytial and parainfluenza viruses, 2010–2015. Journal of Infection, 2019, 79, 373-382.	1.7	53
45	Emergence and Dissemination of a Swine H3N2 Reassortant Influenza Virus with 2009 Pandemic H1N1 Genes in Pigs in China. Journal of Virology, 2012, 86, 2375-2378.	1.5	52
46	Emergence and development of H7N9 influenza viruses in China. Current Opinion in Virology, 2016, 16, 106-113.	2.6	50
47	Phylogenetic evidence for homologous recombination within the family Birnaviridae. Journal of General Virology, 2008, 89, 3156-3164.	1.3	48
48	History of Swine Influenza Viruses in Asia. Current Topics in Microbiology and Immunology, 2011, 370, 57-68.	0.7	47
49	Epidemiological Dynamics and Phylogeography of Influenza Virus in Southern China. Journal of Infectious Diseases, 2013, 207, 106-114.	1.9	41
50	Phylogenetic perspectives on the epidemiology and origins of SARS and SARS-like coronaviruses. Infection, Genetics and Evolution, 2009, 9, 1185-1196.	1.0	40
51	The evolutionary dynamics of influenza A virus adaptation to mammalian hosts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120382.	1.8	40
52	Genomic Analysis of the Emergence, Evolution, and Spread of Human Respiratory RNA Viruses. Annual Review of Genomics and Human Genetics, 2016, 17, 193-218.	2.5	38
53	Unlocking capacities of genomics for the COVID-19 response and future pandemics. Nature Methods, 2022, 19, 374-380.	9.0	35
54	Features of the new pandemic influenza A/H1N1/2009 virus: virology, epidemiology, clinical and public health aspects. Current Opinion in Pulmonary Medicine, 2010, 16, 235-241.	1.2	33

Томму Tsan-Yuk Lam

#	Article	IF	CITATIONS
55	Phylodynamics of H5N1 avian influenza virus in Indonesia. Molecular Ecology, 2012, 21, 3062-3077.	2.0	33
56	The impact of host genetic diversity on virus evolution and emergence. Ecology Letters, 2018, 21, 253-263.	3.0	33
57	Emerging, Novel, and Known Influenza Virus Infections in Humans. Infectious Disease Clinics of North America, 2010, 24, 603-617.	1.9	32
58	Nowcasting epidemics of novel pathogens: lessons from COVID-19. Nature Medicine, 2021, 27, 388-395.	15.2	32
59	Large-Scale Complete-Genome Sequencing and Phylodynamic Analysis of Eastern Equine Encephalitis Virus Reveals Source-Sink Transmission Dynamics in the United States. Journal of Virology, 2018, 92, .	1.5	31
60	Infectivity and Transmissibility of Avian H9N2 Influenza Viruses in Pigs. Journal of Virology, 2016, 90, 3506-3514.	1.5	29
61	Genetic characterization and evolutionary analysis of 4 Newcastle disease virus isolate full genomes from waterbirds in South China during 2003–2007. Veterinary Microbiology, 2011, 152, 46-54.	0.8	27
62	Genomic epidemiology of SARS-CoV-2 under an elimination strategy in Hong Kong. Nature Communications, 2022, 13, 736.	5.8	26
63	Evolutionary analyses of European H1N2 swine influenza A virus by placing timestamps on the multiple reassortment events. Virus Research, 2008, 131, 271-278.	1.1	24
64	The recombinant origin of emerging human norovirus GII.4/2008: intra-genotypic exchange of the capsid P2 domain. Journal of General Virology, 2012, 93, 817-822.	1.3	24
65	Epidemiological and Evolutionary Dynamics of Influenza B Viruses in Malaysia, 2012-2014. PLoS ONE, 2015, 10, e0136254.	1.1	24
66	Successful establishment and global dispersal of genotype VI avian paramyxovirus serotype 1 after cross species transmission. Infection, Genetics and Evolution, 2013, 17, 260-268.	1.0	23
67	Association between inflammatory cytokines and anti-SARS-CoV-2 antibodies in hospitalized patients with COVID-19. Immunity and Ageing, 2022, 19, 12.	1.8	23
68	Systematic phylogenetic analysis of influenza A virus reveals many novel mosaic genome segments. Infection, Genetics and Evolution, 2013, 18, 367-378.	1.0	21
69	Geographically weighted temporally correlated logistic regression model. Scientific Reports, 2018, 8, 1417.	1.6	21
70	Occurrence and Reassortment of Avian Influenza A (H7N9) Viruses Derived from Coinfected Birds in China. Journal of Virology, 2014, 88, 13344-13351.	1.5	20
71	Migration and Persistence of Human Influenza A Viruses, Vietnam, 2001–2008. Emerging Infectious Diseases, 2013, 19, 1756-1765.	2.0	16
72	Genetic characterization of highly pathogenic H5 influenza viruses from poultry in Taiwan, 2015. Infection, Genetics and Evolution, 2016, 38, 96-100.	1.0	15

Томму Tsan-Yuk Lam

#	Article	IF	CITATIONS
73	Viral evolution explains the associations among hepatitis C virus genotype, clinical outcomes, and human genetic variation. Infection, Genetics and Evolution, 2013, 20, 418-421.	1.0	14
74	Puzzling Origins of the Ebola Outbreak in the Democratic Republic of the Congo, 2014. Journal of Virology, 2015, 89, 10130-10132.	1.5	14
75	Increasing similarity in the dynamics of influenza in two adjacent subtropical Chinese cities following the relaxation of border restrictions. Journal of General Virology, 2014, 95, 531-538.	1.3	13
76	Diffusion of influenza viruses among migratory birds with a focus on the Southwest United States. Infection, Genetics and Evolution, 2014, 26, 185-193.	1.0	13
77	Tracking the Genomic Footprints of SARS-CoV-2 Transmission. Trends in Genetics, 2020, 36, 544-546.	2.9	12
78	Genetic Variation of Multiple Serotypes of Enteroviruses Associated with Hand, Foot and Mouth Disease in Southern China. Virologica Sinica, 2021, 36, 61-74.	1.2	11
79	Transmission dynamics of the COVID-19 epidemic in England. International Journal of Infectious Diseases, 2021, 104, 132-138.	1.5	11
80	A cluster of Zika virus infection among travellers returning to China from Samoa: a case tracing study. Journal of Travel Medicine, 2018, 25, .	1.4	10
81	Comparative seasonalities of influenza A, B and †common cold' coronaviruses – setting the scene for SARS-CoV-2 infections and possible unexpected host immune interactions. Journal of Infection, 2020, 81, e62-e64.	1.7	9
82	Australia as a global sink for the genetic diversity of avian influenza A virus. PLoS Pathogens, 2022, 18, e1010150.	2.1	9
83	Sequencing and Characterisation of Complete Mitogenome DNA for Rasbora hobelmani (Cyprinidae) with Phylogenetic Consideration. Journal of Ichthyology, 2020, 60, 90-98.	0.2	8
84	Genomic surveillance of avian-origin influenza A viruses causing human disease. Genome Medicine, 2018, 10, 50.	3.6	7
85	Sequencing and characterization of complete mitogenome DNA of Rasbora tornieri (Cypriniformes:) Tj ETQq1 1	0.784314 0.4	rgBT /Overloo
86	Comments to the predecessor of human SARS coronavirus in 2003–2004 epidemic. Veterinary Microbiology, 2008, 126, 390-393.	0.8	5
87	Sequencing and characterization of complete mitogenome DNA for Rasbora myersi (Cypriniformes:) Tj ETQq1 1	0.784314 0.4	rgBT /Overloo
88	Sequencing and Characterisation of Complete Mitochondrial DNA Genome for Trigonopoma pauciperforatum (Cypriniformes: Cyprinidae: Danioninae) with Phylogenetic Consideration. Tropical Life Sciences Research, 2020, 31, 107-121.	0.5	5
89	Sequencing and characterisation of complete mitogenome DNA for Rasbora sarawakensis (Cypriniformes: Cyprinidae: Rasbora) with phylogenetic consideration. Computational Biology and Chemistry, 2020, 89, 107403.	1.1	4
90	Genomic characterization of a new CRF01_AE/CRF07_BC case from a MSM patient in Guangdong, China. Journal of Medical Virology, 2021, 93, 6383-6387.	2.5	4

#	Article	IF	CITATIONS
91	Highly Pathogenic Avian Influenza A(H5N6) Virus Clade 2.3.4.4h in Wild Birds and Live Poultry Markets, Bangladesh. Emerging Infectious Diseases, 2021, 27, 2492-2494.	2.0	4
92	Virome and Blood Meal-Associated Host Responses in Ixodes persulcatus Naturally Fed on Patients. Frontiers in Microbiology, 2021, 12, 728996.	1.5	4
93	Editorial: Biomedical Data Visualization: Methods and Applications. Frontiers in Genetics, 2022, 13, 890775.	1.1	2
94	A7 Evolution of influenza A(H7N9) viruses from waves I to IV. Virus Evolution, 2017, 3, .	2.2	1
95	Neuraminidase inhibitor susceptibility and evolutionary analysis of human influenza B isolates from three Asian countries during 2012–2015. Infection, Genetics and Evolution, 2018, 62, 27-33.	1.0	1
96	Molecular Epidemiology of H5N1 Avian Influenza Virus: Correlations between Antigenic Drift, Geographical Migration and Expansion of Viral Diversity. International Journal of Infectious Diseases, 2008, 12, e58-e59.	1.5	0
97	A24 Application of large-scale sequencing and data analysis to research on emerging infectious diseases. Virus Evolution, 2017, 3, .	2.2	0