
Pinghua Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7070127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methylerythritol Phosphate Pathway of Isoprenoid Biosynthesis. Annual Review of Biochemistry, 2013, 82, 497-530.	11.1	248
2	Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Natural Product Reports, 2018, 35, 792-837.	10.3	122
3	Protein Purification and Function Assignment of the Epoxidase Catalyzing the Formation of Fosfomycin. Journal of the American Chemical Society, 2001, 123, 4619-4620.	13.7	97
4	Bioinformatic and Biochemical Characterizations of C–S Bond Formation and Cleavage Enzymes in the Fungus <i>Neurospora crassa</i> Ergothioneine Biosynthetic Pathway. Organic Letters, 2014, 16, 5382-5385.	4.6	74
5	Mini-Review: Ergothioneine and Ovothiol Biosyntheses, an Unprecedented Trans-Sulfur Strategy in Natural Product Biosynthesis. Biochemistry, 2018, 57, 3309-3325.	2.5	56
6	Regioselectivity of the Oxidative C–S Bond Formation in Ergothioneine and Ovothiol Biosyntheses. Organic Letters, 2013, 15, 4854-4857.	4.6	53
7	Cysteine Oxidation Reactions Catalyzed by a Mononuclear Non-heme Iron Enzyme (OvoA) in Ovothiol Biosynthesis. Organic Letters, 2014, 16, 2122-2125.	4.6	48
8	Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate. Scientific Reports, 2015, 5, 11870.	3.3	42
9	Use of a Tyrosine Analogue To Modulate the Two Activities of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis, Cysteine Oxidation versus Oxidative C–S Bond Formation. Journal of the American Chemical Society, 2018, 140, 4604-4612.	13.7	42
10	Snapshots of C-S Cleavage in Egt2 Reveals Substrate Specificity and Reaction Mechanism. Cell Chemical Biology, 2018, 25, 519-529.e4.	5.2	29
11	<i>In Vitro</i> Reconstitution of the Remaining Steps in Ovothiol A Biosynthesis: C–S Lyase and Methyltransferase Reactions. Organic Letters, 2018, 20, 5427-5430.	4.6	26
12	Plasmonic Nanotrough Networks for Scalable Bacterial Raman Biosensing. ACS Applied Materials & Interfaces, 2018, 10, 27928-27935.	8.0	22
13	Mechanistic Studies of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis Using a Tyrosine Analogue, 2-Amino-3-(4-hydroxy-3-(methoxyl) phenyl) Propanoic Acid (MeOTyr). ACS Catalysis, 2019, 9, 253-258.	11.2	22
14	Chemical modifications of proteins and their applications in metalloenzyme studies. Synthetic and Systems Biotechnology, 2021, 6, 32-49.	3.7	22
15	Hybrid Plasmonic Photoreactors as Visible Light-Mediated Bactericides. ACS Applied Materials & Interfaces, 2020, 12, 106-116.	8.0	21
16	Crystal Structure of the Ergothioneine Sulfoxide Synthase from <i>Candidatus Chloracidobacterium thermophilum</i> and Structure-Guided Engineering To Modulate Its Substrate Selectivity. ACS Catalysis, 2019, 9, 6955-6961.	11.2	18
17	Single-Step Replacement of an Unreactive C–H Bond by a C–S Bond Using Polysulfide as the Direct Sulfur Source in the Anaerobic Ergothioneine Biosynthesis. ACS Catalysis, 2020, 10, 8981-8994.	11.2	15
18	OvoA _{Mtht} from <i>Methyloversatilis thermotolerans</i> ovothiol biosynthesis is a bifunction enzyme: thiol oxygenase and sulfoxide synthase activities. Chemical Science, 2022, 13, 3589-3598.	7.4	14

Ρινςμμα Liu

#	Article	IF	CITATIONS
19	Implications for an Imidazole-2-yl Carbene Intermediate in the Rhodanase-Catalyzed C–S Bond Formation Reaction of Anaerobic Ergothioneine Biosynthesis. ACS Catalysis, 2021, 11, 3319-3334.	11.2	12
20	Dissecting the Mechanism of the Nonheme Iron Endoperoxidase FtmOx1 Using Substrate Analogues. Jacs Au, 2022, 2, 1686-1698.	7.9	11
21	Biochemical Characterization of a Multifunctional Mononuclear Nonheme Iron Enzyme (PtlD) in Neopentalenoketolactone Biosynthesis. Organic Letters, 2019, 21, 7592-7596.	4.6	9
22	Mechanistic Elucidation of Two Catalytically Versatile Iron(II)- and α-Ketoglutarate-Dependent Enzymes: Cases Beyond Hydroxylation. Comments on Inorganic Chemistry, 2018, 38, 127-165.	5.2	4
23	Non-heme iron enzyme-catalyzed complex transformations. Advances in Protein Chemistry and Structural Biology, 2019, 117, 1-61.	2.3	3
24	Plasmonic photoreactors-coated plastic tubing as combined-active-and-passive antimicrobial flow sterilizer. Journal of Materials Chemistry B, 2022, 10, 2001-2010.	5.8	0