
Stefano Roelens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7067520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Sulfonated Tweezer-Shaped Receptor Selectively Recognizes Caffeine in Water. Journal of Organic Chemistry, 2022, , .	3.2	0
2	Synthetic carbohydrate-binding agents neutralize SARS-CoV-2 by inhibiting binding of the spike protein to ACE2. IScience, 2022, 25, 104239.	4.1	7
3	A Simple Biomimetic Receptor Selectively Recognizing the GlcNAc 2 Disaccharide in Water. Angewandte Chemie, 2021, 133, 11268-11272.	2.0	5
4	A Simple Biomimetic Receptor Selectively Recognizing the GlcNAc 2 Disaccharide in Water. Angewandte Chemie - International Edition, 2021, 60, 11168-11172.	13.8	14
5	Molecular Recognition of Disaccharides in Water: Preorganized Macrocyclic or Adaptive Acyclic?. Chemistry - A European Journal, 2021, 27, 10456-10460.	3.3	6
6	A Preorganized Hydrogenâ€Bonding Motif for the Molecular Recognition of Carbohydrates. ChemPhysChem, 2020, 21, 257-262.	2.1	19
7	A Class of Potent Inhibitors of the HIV-1 Nucleocapsid Protein Based on Aminopyrrolic Scaffolds. ACS Medicinal Chemistry Letters, 2020, 11, 698-705.	2.8	4
8	Effective Recognition of Caffeine by Diaminocarbazolic Receptors. ChemPlusChem, 2020, 85, 1369-1373.	2.8	7
9	Tn antigen analogues: the synthetic way to "upgrade―an attracting tumour associated carbohydrate antigen (TACA). Chemical Communications, 2019, 55, 7729-7736.	4.1	31
10	Biomimetic Carbohydrateâ€Binding Agents (CBAs): Binding Affinities and Biological Activities. ChemBioChem, 2019, 20, 1329-1346.	2.6	37
11	A Biomimetic Synthetic Receptor Selectively Recognising Fucose in Water. Chemistry - A European Journal, 2018, 24, 6828-6836.	3.3	52
12	Chloride anion transporters inhibit growth of methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Chemical Communications, 2016, 52, 7560-7563.	4.1	37
13	Antiviral Activity of Synthetic Aminopyrrolic Carbohydrate Binding Agents: Targeting the Glycans of Viral gp120 to Inhibit HIV Entry. Chemistry - A European Journal, 2015, 21, 10089-10093.	3.3	28
14	A DAC tartrate-based gelator system featuring markedly improved gelation properties: enhancing lifetime and functionality of gel networks. CrystEngComm, 2015, 17, 8021-8030.	2.6	5
15	Synthetic aminopyrrolic receptors have apoptosis inducing activity. Chemical Science, 2015, 6, 7284-7292.	7.4	26
16	Phosphate binding by a novel Zn(ii) complex featuring a trans-1,2-diaminocyclohexane ligand. Effective anion recognition in water. Organic and Biomolecular Chemistry, 2015, 13, 1860-1868.	2.8	15
17	Systematic Dissection of an Aminopyrrolic Cage Receptor for βâ€Glucopyranosides Reveals the Essentials for Effective Recognition. Chemistry - A European Journal, 2014, 20, 6081-6091.	3.3	38
18	Pyrrolic Tripodal Receptors for the Molecular Recognition of Carbohydrates: Ditopic Receptors for Dimannosides. Chemistry - A European Journal, 2013, 19, 11742-11752.	3.3	23

STEFANO ROELENS

#	Article	IF	CITATIONS
19	A TRPA1 antagonist reverts oxaliplatin-induced neuropathic pain. Scientific Reports, 2013, 3, 2005.	3.3	58
20	Synthetic Tripodal Receptors for Carbohydrates. Pyrrole, a Hydrogen Bonding Partner for Saccharidic Hydroxyls. Journal of Organic Chemistry, 2012, 77, 7548-7554.	3.2	30
21	Aminopyrrolic Synthetic Receptors for Monosaccharides: A Class of Carbohydrateâ€Binding Agents Endowed with Antibiotic Activity versus Pathogenic Yeasts. Chemistry - A European Journal, 2012, 18, 5064-5072.	3.3	31
22	<i>BC</i> ₅₀ : A Generalized, Unifying Affinity Descriptor. Chemical Record, 2012, 12, 544-566.	5.8	24
23	Competition between gelation and crystallisation of a peculiar multicomponent liquid system based on ammonium salts. Soft Matter, 2012, 8, 3446.	2.7	45
24	Diels-Alder Based Synthesis of Glycomimetics. , 2012, , 240-254.		0
25	Pyrrolic tripodal receptors for carbohydrates. Role of functional groups and binding geometry on carbohydrate recognition. Organic and Biomolecular Chemistry, 2011, 9, 1085-1091.	2.8	24
26	Chiral Diaminopyrrolic Receptors for Selective Recognition of Mannosides, Part 1: Design, Synthesis, and Affinities of Secondâ€Generation Tripodal Receptors. Chemistry - A European Journal, 2011, 17, 4814-4820.	3.3	43
27	Chiral Diaminopyrrolic Receptors for Selective Recognition of Mannosides, Part 2: A 3D View of the Recognition Modes by Xâ€ray, NMR Spectroscopy, and Molecular Modeling. Chemistry - A European Journal, 2011, 17, 4821-4829.	3.3	35
28	Selective Recognition of βâ€Mannosides by Synthetic Tripodal Receptors: A 3D View of the Recognition Mode by NMR. European Journal of Organic Chemistry, 2010, 2010, 64-71.	2.4	23
29	A Chiral Pyrrolic Tripodal Receptor Enantioselectively Recognizes βâ€Mannose and βâ€Mannosides. Chemistry - A European Journal, 2010, 16, 414-418.	3.3	50
30	Binding of Ionic Species: A General Approach To Measuring Binding Constants and Assessing Affinities. Chemistry - A European Journal, 2009, 15, 2635-2644.	3.3	48
31	Ionâ€Pair Binding: Is Binding Both Binding Better?. Chemistry - A European Journal, 2009, 15, 8296-8302.	3.3	49
32	Aromatic tripodal receptors for (C60-Ih)[5,6]fullerene. Organic and Biomolecular Chemistry, 2009, 7, 3871.	2.8	11
33	A β-Mannoside-Selective Pyrrolic Tripodal Receptor. Organic Letters, 2007, 9, 4685-4688.	4.6	54
34	A Tricatecholic Receptor for Carbohydrate Recognition:Â Synthesis and Binding Studies. Journal of Organic Chemistry, 2007, 72, 3933-3936.	3.2	30
35	Pyrrolic Tripodal Receptors Effectively Recognizing Monosaccharides. Affinity Assessment through a Generalized Binding Descriptor. Journal of the American Chemical Society, 2007, 129, 4377-4385.	13.7	84
36	A Self-Assembled Pyrrolic Cage Receptor Specifically Recognizes β-Glucopyranosides. Angewandte Chemie - International Edition, 2006, 45, 6693-6696.	13.8	140

STEFANO ROELENS

#	Article	IF	CITATIONS
37	A High-Affinity Carbohydrate-Containing Inhibitor of Matrix Metalloproteinases. ChemMedChem, 2006, 1, 598-601.	3.2	28
38	A New Tripodal Receptor for Molecular Recognition of Monosaccharides. A Paradigm for Assessing Glycoside Binding Affinities and Selectivities by 1H NMR Spectroscopy. Journal of the American Chemical Society, 2004, 126, 16456-16465.	13.7	139
39	Binding of Acetylcholine and Tetramethylammonium to Flexible Cyclophane Receptors:  Improving on Binding Ability by Optimizing Host's Geometry. Journal of Organic Chemistry, 2004, 69, 3654-3661.	3.2	46
40	Binding of Tetramethylammonium to Polyether Side-Chained Aromatic Hosts. Evaluation of the Binding Contribution from Ether Oxygen Donors. Journal of Organic Chemistry, 2003, 68, 8149-8156.	3.2	22
41	Binding of Acetylcholine and Tetramethylammonium to a Cyclophane Receptor:Â Anion's Contribution to the Cationâ^Ï€ Interaction. Journal of the American Chemical Society, 2002, 124, 8307-8315.	13.7	115
42	Supramolecular Structures by Recognition and Self-Assembly of Complementary Partners:  An Unprecedented Ionic Hydrogen-Bonded Triple-Stranded Helicate. Journal of Organic Chemistry, 2001, 66, 4930-4933.	3.2	31
43	Hydrogen bonded supramolecular structures: a further insight into the diamine-diol recognition and self-assembly. Canadian Journal of Chemistry, 2000, 78, 723-731.	1.1	7
44	Hydrogen bonded supramolecular structures: a further insight into the diamine-diol recognition and self-assembly. Canadian Journal of Chemistry, 2000, 78, 723-731.	1.1	0
45	Binding of Acetylcholine to a Cyclophane Host. Influence of Water and Reliability of NMR Measurements of Small Association Constants. Supramolecular Chemistry, 1999, 10, 225-232.	1.2	10
46	Electrostatic Attraction of Counterion Dominates the Cationâ^'ĩ€ Interaction of Acetylcholine and Tetramethylammonium with Aromatics in Chloroform. Journal of the American Chemical Society, 1999, 121, 11908-11909.	13.7	60
47	Binding of Acetylcholine and Quaternary Ammonium Cations to Macrocyclic and Acyclic "Phane― Esters. Evaluation of the Cationâ~ï€ Primary Interaction through Adaptive Aromatic Hosts. Journal of the American Chemical Society, 1998, 120, 12443-12452.	13.7	72
48	Structure and Binding Properties of Four New Oligomeric Cyclophane Esters: 1,4-Xylylene 1,4-Phenylene Diacetates and Dipropionates. Australian Journal of Chemistry, 1998, 51, 361.	0.9	6
49	Organotin-Mediated Monoacylation of Diols with Reversed Chemoselectivity. Mechanism and Selectivity1. Journal of Organic Chemistry, 1996, 61, 5257-5263.	3.2	48
50	Molecular Recognition and Self-Assembly by Non-amidic Hydrogen Bonding. An Exceptional Assembler of Neutral and Charged Supramolecular Structures. Journal of the American Chemical Society, 1995, 117, 7630-7645.	13.7	135
51	Molecular Recognition and Self-Assembly by Weak Hydrogen Bonding: Unprecedented Supramolecular Helicate Structures from Diamine/Diol Motifs. Journal of the American Chemical Society, 1994, 116, 4495-4496.	13.7	109
52	Macrocyclization under thermodynamic control. A theoretical study and its application to the equilibrium cyclooligomerization of .betapropiolactone. Journal of the American Chemical Society, 1993, 115, 3901-3908.	13.7	186
53	A protocol for the efficient synthesis of enantiopure .betasubstituted .betalactones. Journal of Organic Chemistry, 1993, 58, 7932-7936.	3.2	47
54	Group 14 organometallic reagents. 11. Macrocyclic polylactones by catalyzed cyclooligomerization. Tetra[(S)betabutyrolactone]. Journal of Organic Chemistry, 1992, 57, 1472-1476.	3.2	18

STEFANO ROELENS

#	Article	IF	CITATIONS
55	Group 14 organometallic reagents. 12. An improved procedure for the synthesis of macrocyclic poly(thialactones). The dramatic effect of reactant mixing. Journal of Organic Chemistry, 1992, 57, 766-768.	3.2	21
56	2,2-Di-n-butyl-1,3,2-dioxastannolane/di-n-butyltin dichloride: an excellent catalytic system for cyclo-oligomerization of lactones. Journal of the Chemical Society Chemical Communications, 1990, , 58.	2.0	11
57	Group 14 organometallic reagents. 9. Organotin-mediated monoacylation of diols with reversed chemoselectivity: a convenient synthetic method. Journal of Organic Chemistry, 1990, 55, 5132-5139.	3.2	62
58	Organotin-mediated synthesis of macrocyclic tetraesters. A combined proton NMR spectroscopy, gel permeation chromatography, and fast atom bombardment mass spectrometry approach to complete product analysis. Macromolecules, 1989, 22, 3275-3280.	4.8	15
59	Group 14 organometallic reagents. 8. Organotin-mediated synthesis of macrocyclic tetraesters: regio- and stereochemistry. Journal of Organic Chemistry, 1989, 54, 2643-2645.	3.2	8
60	13C NMR studies of d- and l-phenylalanine binding to cobalt(II) carboxypeptidase A. Journal of Inorganic Biochemistry, 1988, 32, 1-6.	3.5	23
61	Group 4 organometallic reagents. Part 6. The organotin-mediated monofunctionalization of diols: an insight into the selective monoesterification with acyl chlorides. Journal of the Chemical Society Perkin Transactions II, 1988, , 2105.	0.9	10
62	Organotin-mediated synthesis of macrocyclic polyesters: mechanism and selectivity in the reaction of dioxastannolanes with diacyl dichlorides. Journal of the Chemical Society Perkin Transactions II, 1988, , 1617.	0.9	12
63	Interaction of carbon dioxide and copper(II) carbonic anhydrase. Journal of the American Chemical Society, 1987, 109, 7855-7856.	13.7	29
64	Group 14 organometallic reagents. 4. Stereodynamics of substituted dioxastannolanes. Carbon-13 and tin-119 NMR studies. Journal of Organic Chemistry, 1987, 52, 4444-4449.	3.2	17
65	Group IVA organometallic reagents. 2. Enantiomeric purity determination of 1,2-diols through NMR spectroscopy without chiral auxiliaries. Journal of the American Chemical Society, 1986, 108, 4873-4878.	13.7	47
66	Regioselective acylation of glycols: evidence for organotin-mediated reversal of chemoselectivity. Journal of the Chemical Society Chemical Communications, 1985, , 1457.	2.0	19
67	Group 4 organometallic reagents. A 1H, 13C and 119Sn nuclear magnetic resonance study on 2,2-dibutyl-1,3,2-dioxastannolane structure in solution. Journal of the Chemical Society Perkin Transactions II, 1985, , 799.	0.9	13
68	Activated C,H-Acids:N-Alkyl-9-fluorenimines. Preliminary communication. Helvetica Chimica Acta, 1981, 64, 2524-2527.	1.6	2
69	Ring-closure reactions. 10. A kinetic study for the formation of macrocyclic aromatic ethers. Lack of the rigid group effect on large ring formation. Journal of Organic Chemistry, 1977, 42, 3733-3736.	3.2	5
70	Synthetic receptors for molecular recognition of carbohydrates. Carbohydrate Chemistry, 0, , 149-186.	0.3	7