
Bassam Janji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7067398/publications.pdf Version: 2024-02-01

RASSAM LANU

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	PD-L1 is a novel direct target of HIF-11±, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. Journal of Experimental Medicine, 2014, 211, 781-790.	8.5	1,601
4	Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood, 2015, 126, 1106-1117.	1.4	399
5	Hypoxia: a key player in antitumor immune response. A Review in the Theme: Cellular Responses to Hypoxia. American Journal of Physiology - Cell Physiology, 2015, 309, C569-C579.	4.6	316
6	Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17450-17455.	7.1	263
7	Epithelial-to-Mesenchymal Transition and Autophagy Induction in Breast Carcinoma Promote Escape from T-cell–Mediated Lysis. Cancer Research, 2013, 73, 2418-2427.	0.9	255
8	Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-1² and miR23a transfer. Oncolmmunology, 2016, 5, e1062968.	4.6	247
9	Blocking Hypoxia-Induced Autophagy in Tumors Restores Cytotoxic T-Cell Activity and Promotes Regression. Cancer Research, 2011, 71, 5976-5986.	0.9	223
10	The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncolmmunology, 2017, 6, e1263412.	4.6	193
11	Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9271-E9279.	7.1	181
12	Hypoxia-Inducible miR-210 Regulates the Susceptibility of Tumor Cells to Lysis by Cytotoxic T Cells. Cancer Research, 2012, 72, 4629-4641.	0.9	168
13	Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti–PD-1/PD-L1 immunotherapy. Science Advances, 2020, 6, eaax7881.	10.3	164
14	The Critical Role of the Tumor Microenvironment in Shaping Natural Killer Cell-Mediated Anti-Tumor Immunity. Frontiers in Immunology, 2013, 4, 490.	4.8	155
15	Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges. Cells, 2019, 8, 1083.	4.1	153
16	Renal Cell Carcinoma Programmed Death-ligand 1, a New Direct Target of Hypoxia-inducible Factor-2 Alpha, is Regulated by von Hippel–Lindau Gene Mutation Status. European Urology, 2016, 70, 623-632.	1.9	115
17	Hypoxia-induced autophagy drives colorectal cancer initiation and progression by activating the PRKC/PKC-EZR (ezrin) pathway. Autophagy, 2020, 16, 1436-1452.	9.1	114
18	Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood, 2018, 131, 1617-1621.	1.4	101

BASSAM JANJI

#	Article	IF	CITATIONS
19	The acquisition of resistance to TNFα in breast cancer cells is associated with constitutive activation of autophagy as revealed by a transcriptome analysis using a custom microarray. Autophagy, 2011, 7, 760-770.	9.1	99
20	ITPR1 Protects Renal Cancer Cells against Natural Killer Cells by Inducing Autophagy. Cancer Research, 2014, 74, 6820-6832.	0.9	97
21	Phosphorylation on Ser5 increases the F-actin-binding activity of L-plastin and promotes its targeting to sites of actin assembly in cells. Journal of Cell Science, 2006, 119, 1947-1960.	2.0	93
22	Actin Cytoskeleton Remodeling Drives Breast Cancer Cell Escape from Natural Killer–Mediated Cytotoxicity. Cancer Research, 2018, 78, 5631-5643.	0.9	93
23	Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A. British Journal of Cancer, 2017, 117, 813-825.	6.4	89
24	Microenvironmental Hypoxia Orchestrating the Cell Stroma Cross Talk, Tumor Progression and Antitumor Response. Critical Reviews in Immunology, 2011, 31, 357-377.	0.5	83
25	Impact of hypoxic tumor microenvironment and tumor cell plasticity on the expression of immune checkpoints. Cancer Letters, 2019, 458, 13-20.	7.2	83
26	The Selective Degradation of Synaptic Connexin 43 Protein by Hypoxia-induced Autophagy Impairs Natural Killer Cell-mediated Tumor Cell Killing. Journal of Biological Chemistry, 2015, 290, 23670-23679.	3.4	81
27	Activation of NK cells and disruption of PD-L1/PD-1 axis: two different ways for lenalidomide to block myeloma progression. Oncotarget, 2017, 8, 24031-24044.	1.8	77
28	Autophagy: An adaptive metabolic response to stress shaping the antitumor immunity. Biochemical Pharmacology, 2014, 92, 31-42.	4.4	76
29	Autophagic degradation of GZMB/granzyme B. Autophagy, 2014, 10, 173-175.	9.1	73
30	Targeting HIF-1 alpha transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy. Oncogene, 2021, 40, 4725-4735.	5.9	70
31	EMT impairs breast carcinoma cell susceptibility to CTL-mediated lysis through autophagy induction. Autophagy, 2013, 9, 1104-1106.	9.1	69
32	CD47 is a direct target of SNAI1 and ZEB1 and its blockade activates the phagocytosis of breast cancer cells undergoing EMT. OncoImmunology, 2018, 7, e1345415.	4.6	63
33	Targeting Autophagy in the Tumor Microenvironment: New Challenges and Opportunities for Regulating Tumor Immunity. Frontiers in Immunology, 2018, 9, 887.	4.8	63
34	The Distinct Roles of CXCR3 Variants and Their Ligands in the Tumor Microenvironment. Cells, 2019, 8, 613.	4.1	60
35	Hypoxia promotes breast cancer cell invasion through HIF-1α-mediated up-regulation of the invadopodial actin bundling protein CSRP2. Scientific Reports, 2018, 8, 10191.	3.3	59
36	Hypoxia-induced autophagy. Autophagy, 2012, 8, 704-706.	9.1	56

BASSAM JANJI

#	Article	IF	CITATIONS
37	The multifaceted role of autophagy in tumor evasion from immune surveillance. Oncotarget, 2016, 7, 17591-17607.	1.8	53
38	Tumor Plasticity Interferes with Anti-Tumor Immunity. Critical Reviews in Immunology, 2014, 34, 91-102.	0.5	44
39	The Histone Deacetylase Inhibitor MGCD0103 Induces Apoptosis in B-Cell Chronic Lymphocytic Leukemia Cells through a Mitochondria-Mediated Caspase Activation Cascade. Molecular Cancer Therapeutics, 2010, 9, 1349-1360.	4.1	42
40	Cutting Edge: NANOG Activates Autophagy under Hypoxic Stress by Binding to BNIP3L Promoter. Journal of Immunology, 2017, 198, 1423-1428.	0.8	36
41	The actin filament crossâ€linker Lâ€plastin confers resistance to TNFâ€Î± in MCFâ€7 breast cancer cells in a phosphorylationâ€dependent manner. Journal of Cellular and Molecular Medicine, 2010, 14, 1264-1275.	3.6	34
42	Targeting autophagy blocks melanoma growth by bringing natural killer cells to the tumor battlefield. Autophagy, 2018, 14, 730-732.	9.1	34
43	miR-210 and hypoxic microvesicles: Two critical components of hypoxia involved in the regulation of killer cells function. Cancer Letters, 2016, 380, 257-262.	7.2	33
44	CRP2, a new invadopodia actin bundling factor critically promotes breast cancer cell invasion and metastasis. Oncotarget, 2016, 7, 13688-13705.	1.8	33
45	The autophagy sensor ITPR1 protects renal carcinoma cells from NK-mediated killing. Autophagy, 2015, , 00-00.	9.1	32
46	Lighting up the fire in cold tumors to improve cancer immunotherapy by blocking the activity of the autophagy-related protein PIK3C3/VPS34. Autophagy, 2020, 16, 2110-2111.	9.1	25
47	CXCL10 Is an Agonist of the CC Family Chemokine Scavenger Receptor ACKR2/D6. Cancers, 2021, 13, 1054.	3.7	25
48	Firing up the cold tumors by targeting Vps34. Oncolmmunology, 2020, 9, 1809936.	4.6	24
49	Epithelial to Mesenchymal Transition Regulates Surface PD-L1 via CMTM6 and CMTM7 Induction in Breast Cancer. Cancers, 2021, 13, 1165.	3.7	24
50	Hijacker of the Antitumor Immune Response: Autophagy Is Showing Its Worst Facet. Frontiers in Oncology, 2016, 6, 246.	2.8	22
51	Targeting Cytoprotective Autophagy to Enhance Anticancer Therapies. Frontiers in Oncology, 2021, 11, 626309.	2.8	22
52	Mitochondria preserve an autarkic one-carbon cycle to confer growth-independent cancer cell migration and metastasis. Nature Communications, 2022, 13, 2699.	12.8	20
53	Peroxisome proliferatorâ€activated receptor γ agonists potentiate the cytotoxic effect of valproic acid in multiple myeloma cells. British Journal of Haematology, 2009, 147, 662-671.	2.5	19
54	Driving Natural Killer cells toward the melanoma tumor battlefield: Autophagy as a valuable therapeutic target. Oncolmmunology, 2018, 7, e1452583.	4.6	18

BASSAM JANJI

#	Article	IF	CITATIONS
55	Carbonic Anhydrase IX: A Renewed Target for Cancer Immunotherapy. Cancers, 2022, 14, 1392.	3.7	16
56	High-dimensional mass cytometry analysis revealed microenvironment complexity in chronic lymphocytic leukemia. OncoImmunology, 2018, 7, e1465167.	4.6	15
57	Assessing Autophagy in Archived Tissue or How to Capture Autophagic Flux from a Tissue Snapshot. Biology, 2020, 9, 59.	2.8	12
58	Role of Autophagy in Cancer and Tumor Progression. , 0, , .		11
59	Epigenetic Activity of Peroxisome Proliferator-Activated Receptor Gamma Agonists Increases the Anticancer Effect of Histone Deacetylase Inhibitors on Multiple Myeloma Cells. PLoS ONE, 2015, 10, e0130339.	2.5	11
60	Inhibition of HIF1α-Dependent Upregulation of Phospho-l-Plastin Resensitizes Multiple Myeloma Cells to Frontline Therapy. International Journal of Molecular Sciences, 2018, 19, 1551.	4.1	9
61	Nanoluciferase-based methods to monitor activation, modulation and trafficking of atypical chemokine receptors. Methods in Cell Biology, 2022, , 279-294.	1.1	9
62	The Extended N-Terminal Domain Confers Atypical Chemokine Receptor Properties to CXCR3-B. Frontiers in Immunology, 2022, 13, .	4.8	6
63	Driving Cytotoxic Natural Killer Cells into Melanoma: If CCL5 Plays the Music, Autophagy Calls the Shots. Critical Reviews in Oncogenesis, 2018, 23, 321-332.	0.4	5
64	"Suffocating―tumors by blocking adaptation to hypoxia: a new headway in melanoma immunotherapy. Oncolmmunology, 2021, 10, 1968611.	4.6	4
65	The Promise of Targeting Hypoxia to Improve Cancer Immunotherapy: Mirage or Reality?. Frontiers in Immunology, 0, 13, .	4.8	4
66	CMTM6 and CMTM7: New leads for PD‣1 regulation in breast cancer cells undergoing EMT. Journal of Cellular Biochemistry, 2022, , .	2.6	3
67	Emerging Role of Hypoxia-Induced Autophagy in Cancer Immunotherapy. , 2014, , 247-262.		1
68	The Critical Role of Hypoxia in Tumor-Mediated Immunosuppression. , 0, , .		1
69	Autophagy Regulation of the Tumor Immunity $\hat{a} \in$ " An Old Machinery for a New Function. , 2015, , .		0
70	Autophagy Activation in the Tumor Microenvironment. , 2016, , 267-290.		0
71	Role of Autophagy in Tumor Progression and Regression. Current Cancer Research, 2016, , 117-131.	0.2	0
72	The emerging impact of autophagy on the antitumor immune response. , 2020, , 109-117.		0

5