
Jose Milovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7067059/publications.pdf Version: 2024-02-01

IOSE MILOVICH

#	Article	IF	CITATIONS
1	Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 2014, 506, 343-348.	27.8	742
2	Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Physics of Plasmas, 2011, 18, .	1.9	534
3	Burning plasma achieved in inertial fusion. Nature, 2022, 601, 542-548.	27.8	233
4	Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility. Physical Review Letters, 2018, 120, 245003.	7.8	205
5	The high-foot implosion campaign on the National Ignition Facility. Physics of Plasmas, 2014, 21, .	1.9	149
6	Inertially confined fusion plasmas dominated by alpha-particle self-heating. Nature Physics, 2016, 12, 800-806.	16.7	144
7	Capsule implosion optimization during the indirect-drive National Ignition Campaign. Physics of Plasmas, 2011, 18, .	1.9	131
8	Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility. Physics of Plasmas, 2013, 20, 056318.	1.9	128
9	Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign. Physics of Plasmas, 2015, 22, .	1.9	120
10	First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum. Physical Review Letters, 2015, 114, 175001.	7.8	117
11	High-density carbon ablator experiments on the National Ignition Facility. Physics of Plasmas, 2014, 21, .	1.9	116
12	Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation. Physics of Plasmas, 2012, 19, .	1.9	115
13	A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments. Physics of Plasmas, 2012, 19, .	1.9	108
14	The high velocity, high adiabat, "Bigfoot―campaign and tests of indirect-drive implosion scaling. Physics of Plasmas, 2018, 25, .	1.9	90
15	Design of inertial fusion implosions reaching the burning plasma regime. Nature Physics, 2022, 18, 251-258.	16.7	87
16	High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition Facility. Physical Review Letters, 2018, 121, 135001.	7.8	86
17	Precision Shock Tuning on the National Ignition Facility. Physical Review Letters, 2012, 108, 215004.	7.8	83
18	Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions. Physics of Plasmas, 2019, 26, .	1.9	70

Jose Milovich

#	Article	IF	CITATIONS
19	Nuclear imaging of the fuel assembly in ignition experiments. Physics of Plasmas, 2013, 20, 056320.	1.9	65
20	Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums. Physics of Plasmas, 2015, 22, 062703.	1.9	62
21	Integrated modeling of cryogenic layered highfoot experiments at the NIF. Physics of Plasmas, 2016, 23, .	1.9	59
22	X-ray driven implosions at ignition relevant velocities on the National Ignition Facility. Physics of Plasmas, 2013, 20, .	1.9	54
23	Improving ICF implosion performance with alternative capsule supports. Physics of Plasmas, 2017, 24, .	1.9	54
24	Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF). Plasma Physics and Controlled Fusion, 2019, 61, 014023.	2.1	53
25	Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	50
26	2015, 22, 056314.	1.9	49
27	The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility. Physics of Plasmas, 2018, 25, .	1.9	43
28	Capsule modeling of high foot implosion experiments on the National Ignition Facility. Plasma Physics and Controlled Fusion, 2017, 59, 055006.	2.1	40
29	Evidence of Three-Dimensional Asymmetries Seeded by High-Density Carbon-Ablator Nonuniformity in Experiments at the National Ignition Facility. Physical Review Letters, 2021, 126, 025002.	7.8	40
30	Progress in the indirect-drive National Ignition Campaign. Plasma Physics and Controlled Fusion, 2012, 54, 124026.	2.1	38
31	Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping. Physics of Plasmas, 2016, 23, 056303.	1.9	38
32	First beryllium capsule implosions on the National Ignition Facility. Physics of Plasmas, 2016, 23, 056310.	1.9	37
33	Adiabat-shaping in indirect drive inertial confinement fusion. Physics of Plasmas, 2015, 22, 052702.	1.9	31
34	Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility. Plasma Physics and Controlled Fusion, 2020, 62, 014007.	2.1	31
35	Symmetric fielding of the largest diamond capsule implosions on the NIF. Physics of Plasmas, 2020, 27, .	1.9	28
36	Time-Resolved Fuel Density Profiles of the Stagnation Phase of Indirect-Drive Inertial Confinement Implosions. Physical Review Letters, 2020, 125, 155003.	7.8	27

Jose Milovich

#	Article	IF	CITATIONS
37	Hydrodynamic instabilities seeded by the X-ray shadow of ICF capsule fill-tubes. Physics of Plasmas, 2018, 25, .	1.9	25
38	Hotspot parameter scaling with velocity and yield for high-adiabat layered implosions at the National Ignition Facility. Physical Review E, 2020, 102, 023210.	2.1	25
39	Integrated performance of large HDC-capsule implosions on the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	22
40	Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	20
41	The size and structure of the laser entrance hole in gas-filled hohlraums at the National Ignition Facility. Physics of Plasmas, 2015, 22, .	1.9	19
42	Exploring implosion designs for increased compression on the National Ignition Facility using high density carbon ablators. Physics of Plasmas, 2022, 29, .	1.9	15
43	Understanding asymmetries using integrated simulations of capsule implosions in low gas-fill hohlraums at the National Ignition Facility. Plasma Physics and Controlled Fusion, 2021, 63, 025012.	2.1	14
44	Laser propagation in a subcritical foam: Subgrid model. Physics of Plasmas, 2020, 27, 112710.	1.9	13
45	Indirect-drive ablative Richtmyer Meshkov node scaling. Journal of Physics: Conference Series, 2016, 717, 012034.	0.4	12
46	Deficiencies in compression and yield in x-ray-driven implosions. Physics of Plasmas, 2020, 27, .	1.9	12
47	Fill tube dynamics in inertial confinement fusion implosions with high density carbon ablators. Physics of Plasmas, 2020, 27, .	1.9	11
48	Fuel convergence sensitivity in indirect drive implosions. Physics of Plasmas, 2021, 28, 042705.	1.9	11
49	Experimental and calculational investigation of laser-heated additive manufactured foams. Physics of Plasmas, 2021, 28, .	1.9	9
50	Simulation studies of the interaction of laser radiation with additively manufactured foams. Plasma Physics and Controlled Fusion, 2021, 63, 055009.	2.1	5
51	Hydroscaling indirect-drive implosions on the National Ignition Facility. Physics of Plasmas, 2022, 29, .	1.9	4
52	Foam-lined hohlraum, inertial confinement fusion experiments on the National Ignition Facility. Physical Review E, 2020, 102, 051201.	2.1	2