Pierre Guy Falson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7066133/publications.pdf

Version: 2024-02-01

218677 233421 2,625 100 26 45 citations g-index h-index papers 107 107 107 3619 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Substrate-bound and substrate-free outward-facing structures of a multidrug ABC exporter. Science Advances, 2022, 8, eabg9215.	10.3	27
2	Suppressor genetics reveals novel inter-domain crosstalk within the multidrug transporter $Mdr1$ protein. Access Microbiology, 2022, 3, .	0.5	0
3	Spontaneous Suppressors against Debilitating Transmembrane Mutants of CaMdr1 Disclose Novel Interdomain Communication via Signature Motifs of the Major Facilitator Superfamily. Journal of Fungi (Basel, Switzerland), 2022, 8, 538.	3.5	O
4	ABCG: a new fold of ABC exporters and a whole new bag of riddles!. Advances in Protein Chemistry and Structural Biology, 2021, 123, 163-191.	2.3	12
5	Uncompetitive nanomolar dimeric indenoindole inhibitors of the human breast cancer resistance pump ABCG2. European Journal of Medicinal Chemistry, 2021, 211, 113017.	5.5	12
6	Directed Mutational Strategies Reveal Drug Binding and Transport by the MDR Transporters of Candida albicans. Journal of Fungi (Basel, Switzerland), 2021, 7, 68.	3.5	11
7	The Det.Belt Server: A Tool to Visualize and Estimate Amphipathic Solvent Belts around Membrane Proteins. Membranes, 2021, 11, 459.	3.0	3
8	CryoEM reconstructions of membrane proteins solved in several amphipathic solvents, nanodisc, amphipol and detergents, yield amphipathic belts of similar sizes corresponding to a common ordered solvent layer. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183693.	2.6	9
9	Cdr1p highlights the role of the non-hydrolytic ATP-binding site in driving drug translocation in asymmetric ABC pumps. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183131.	2.6	12
10	Molecular analysis of the massive GSH transport mechanism mediated by the human Multidrug Resistant Protein 1/ABCC1. Scientific Reports, 2020, 10, 7616.	3.3	21
11	Chromones bearing amino acid residues: Easily accessible and potent inhibitors of the breast cancer resistance protein ABCG2. European Journal of Medicinal Chemistry, 2020, 202, 112503.	5.5	15
12	Synthesis and Anticancer Cytotoxicity of Azaaurones Overcoming Multidrug Resistance. Molecules, 2020, 25, 764.	3.8	13
13	Optimization of the chromone scaffold through QSAR and docking studies: Identification of potent inhibitors of ABCG2. European Journal of Medicinal Chemistry, 2019, 184, 111772.	5 . 5	8
14	PDR-like ABC systems in pathogenic fungi. Research in Microbiology, 2019, 170, 417-425.	2.1	24
15	Polymer "ruthenium-cyclopentadienyl―conjugates - New emerging anti-cancer drugs. European Journal of Medicinal Chemistry, 2019, 168, 373-384.	5.5	26
16	Unprecedented inhibition of P-gp activity by a novel ruthenium-cyclopentadienyl compound bearing a bipyridine-biotin ligand. European Journal of Medicinal Chemistry, 2019, 163, 853-863.	5 . 5	39
17	5-Oxo-hexahydroquinoline derivatives as modulators of P-gp, MRP1 and BCRP transporters to overcome multidrug resistance in cancer cells. Toxicology and Applied Pharmacology, 2019, 362, 136-149.	2.8	38
18	Methyl-cyclopentadienyl Ruthenium Compounds with 2,2′-Bipyridine Derivatives Display Strong Anticancer Activity and Multidrug Resistance Potential. Inorganic Chemistry, 2018, 57, 4629-4639.	4.0	36

#	Article	IF	CITATIONS
19	W1038 near D-loop of NBD2 is a focal point for inter-domain communication in multidrug transporter Cdr1 of Candida albicans. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 965-972.	2.6	16
20	Glycosylâ€Substituted Dicarboxylates as Detergents for the Extraction, Overstabilization, and Crystallization of Membrane Proteins. Angewandte Chemie - International Edition, 2018, 57, 2948-2952.	13.8	24
21	Glycosylâ \in Substituted Dicarboxylates as Detergents for the Extraction, Overstabilization, and Crystallization of Membrane Proteins. Angewandte Chemie, 2018, 130, 2998-3002.	2.0	4
22	Molecular Basis of Substrate Polyspecificity of the Candida albicans Mdr1p Multidrug/H+ Antiporter. Journal of Molecular Biology, 2018, 430, 682-694.	4.2	20
23	Optimizing the flavanone core toward new selective nitrogen-containing modulators of ABC transporters. Future Medicinal Chemistry, 2018, 10, 725-741.	2.3	28
24	Monoterpene indole alkaloid azine derivatives as MDR reversal agents. Bioorganic and Medicinal Chemistry, 2018, 26, 421-434.	3.0	25
25	Externalized Keratin 8: A Target at the Interface of Microenvironment and Intracellular Signaling in Colorectal Cancer Cells. Cancers, 2018, 10, 452.	3.7	2
26	Structure-based design and profiling of novel $17\hat{l}^2$ -HSD14 inhibitors. European Journal of Medicinal Chemistry, 2018, 155, 61-76.	5.5	9
27	Ovarian cancer cells cisplatin sensitization agents selected by mass cytometry target ABCC2 inhibition. Future Medicinal Chemistry, 2018, 10, 1349-1360.	2.3	18
28	Make azoles active again: chalcones as potent reversal agents of transporters-mediated resistance in <i>Candida albicans</i> . Future Medicinal Chemistry, 2018, 10, 2177-2186.	2.3	5
29	Au courant computation of the PDB to audit diffraction anisotropy of soluble and membrane proteins. Data in Brief, 2018, 19, 753-757.	1.0	3
30	Peroxisomal ATP-binding cassette transporters form mainly tetramers. Journal of Biological Chemistry, 2017, 292, 6965-6977.	3.4	18
31	Quantification of Detergents Complexed with Membrane Proteins. Scientific Reports, 2017, 7, 41751.	3.3	66
32	Multidrug ABC transporter Cdr1 of Candida albicans harbors specific and overlapping binding sites for human steroid hormones transport. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1778-1789.	2.6	9
33	Flavonoid dimers are highly potent killers of multidrug resistant cancer cells overexpressing MRP1. Biochemical Pharmacology, 2017, 124, 10-18.	4.4	27
34	X-ray diffraction reveals the intrinsic difference in the physical properties of membrane and soluble proteins. Scientific Reports, 2017, 7, 17013.	3.3	13
35	Identification of pyrrolopyrimidine derivative PP-13 as a novel microtubule-destabilizing agent with promising anticancer properties. Scientific Reports, 2017, 7, 10209.	3.3	16
36	Gradient reconstitution of membrane proteins for solid-state NMR studies. Journal of Biomolecular NMR, 2017, 69, 81-91.	2.8	11

#	Article	IF	CITATIONS
37	MRP1-dependent Collateral Sensitivity of Multidrug-resistant Cancer Cells: Identifying Selective Modulators Inducing Cellular Glutathione Depletion. Current Medicinal Chemistry, 2017, 24, 1186-1213.	2.4	27
38	Modulators of the Efflux Pump Cdr1p of Candida albicans: Mechanisms of Action and Chemical Features. Current Medicinal Chemistry, 2017, 24, 3242-3253.	2.4	11
39	Diffraction anisotropy falloff in the direction of the detergent belt for two centered monoclinic crystals of OmpF. Data in Brief, 2016, 7, 726-729.	1.0	3
40	pHluorin enables insights into the transport mechanism of antiporter Mdr1: R215 is critical for drug/H+ antiport. Biochemical Journal, 2016, 473, 3127-3145.	3.7	9
41	Atomic modelling and systematic mutagenesis identify residues in multiple drug binding sites that are essential for drug resistance in the major Candida transporter Cdr1. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2858-2870.	2.6	17
42	Leishmania tarentolae as a Promising Tool for Expressing Polytopic and Multi-Transmembrane Spans Eukaryotic Membrane Proteins: The Case of the ABC Pump ABCG6. Methods in Molecular Biology, 2016, 1432, 119-131.	0.9	2
43	2-Indolylmethylenebenzofuranones as first effective inhibitors of ABCC2. European Journal of Medicinal Chemistry, 2016, 122, 408-418.	5.5	22
44	Two different centered monoclinic crystals of the E. coli outer-membrane protein OmpF originate from the same building block. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 326-332.	2.6	8
45	A Hydrophobic Filter Confers the Cation Selectivity of Zygosaccharomyces rouxii Plasma-Membrane Na+/H+ Antiporter. Journal of Molecular Biology, 2015, 427, 1681-1694.	4.2	12
46	Modulators of the human ABCC2: hope from natural sources?. Future Medicinal Chemistry, 2015, 7, 2041-2063.	2.3	17
47	Hepatitis C Virus Envelope Glycoprotein E1 Forms Trimers at the Surface of the Virion. Journal of Virology, 2015, 89, 10333-10346.	3.4	59
48	Stubborn Contaminants: Influence of Detergents on the Purity of the Multidrug ABC Transporter BmrA. PLoS ONE, 2014, 9, e114864.	2.5	19
49	Quantitative evaluation of the combination between cytotoxic drug and efflux transporter inhibitors based on a tumour growth inhibition model. Fundamental and Clinical Pharmacology, 2014, 28, 161-169.	1.9	8
50	Understanding polyspecificity within the substrateâ€binding cavity of the human multidrug resistance Pâ€glycoprotein. FEBS Journal, 2014, 281, 673-682.	4.7	58
51	Efficient and stable reconstitution of the ABC transporter BmrA for solid-state NMR studies. Frontiers in Molecular Biosciences, 2014, 1, 5.	3.5	25
52	Multidrug resistance ATP-binding cassette membrane transporters as targets for improving oropharyngeal candidiasis treatment. Advances in Cellular and Molecular Otolaryngology, 2014, 2, 23955.	0.4	10
53	Localization of putative binding sites for cyclic guanosine monophosphate and the anti-cancer drug 5-fluoro- $2\hat{a}\in^2$ -deoxyuridine- $5\hat{a}\in^2$ -monophosphate on ABCC11 in silico models. BMC Structural Biology, 2013, 13, 7.	2.3	11
54	Modular construction of quaternary hemiaminal-based inhibitor candidates and their in cellulo assessment with HIV-1 protease. Bioorganic and Medicinal Chemistry, 2013, 21, 5407-5413.	3.0	5

#	Article	IF	CITATIONS
55	Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13386-13391.	7.1	225
56	A template model for studying anticancer drug efflux transporter inhibitorsin vitro. Fundamental and Clinical Pharmacology, 2013, 27, 544-556.	1.9	5
57	Methoxy Stilbenes as Potent, Specific, Untransported, and Noncytotoxic Inhibitors of Breast Cancer Resistance Protein. ACS Chemical Biology, 2012, 7, 322-330.	3.4	43
58	Stoichiometry of the <scp>M</scp> ex <scp>A</scp> â€ <scp>O</scp> pr <scp>M</scp> binding, as investigated by blue native gel electrophoresis. Electrophoresis, 2012, 33, 1282-1287.	2.4	14
59	Targeting the Multidrug ABCG2 Transporter with Flavonoidic Inhibitors: In Vitro Optimization and In Vivo Validation. Current Medicinal Chemistry, 2011, 18, 3387-3401.	2.4	32
60	Structuring Detergents for Extracting and Stabilizing Functional Membrane Proteins. PLoS ONE, 2011, 6, e18036.	2.5	77
61	Multidrug Resistance ABC Transporter Structure Predictions by Homology Modeling Approaches. Current Drug Metabolism, 2011, 12, 268-277.	1.2	13
62	ABCG2 Transports and Transfers Heme to Albumin through Its Large Extracellular Loop*. Journal of Biological Chemistry, 2010, 285, 33123-33133.	3.4	79
63	Potent and Fully Noncompetitive Peptidomimetic Inhibitor of Multidrug Resistance P-Glycoprotein. Journal of Medicinal Chemistry, 2010, 53, 6720-6729.	6.4	26
64	The multidrug resistance half-transporter ABCG2 is purified as a tetramer upon selective extraction from membranes. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2094-2101.	2.6	24
65	Mammalian Membrane Protein Expression in Baculovirus-Infected Insect Cells. Methods in Molecular Biology, 2010, 601, 105-117.	0.9	13
66	Trianionic calix[4] arene monoalkoxy derivatives: synthesis, solid-state structures and self-assembly properties. New Journal of Chemistry, 2008, 32, 1988.	2.8	20
67	Conformational Changes in Sarcoplasmic Reticulum Ca2+-ATPase Mutants: Effect of Mutations either at Ca2+-Binding Site II or at Tryptophan 552 in the Cytosolic Domainâ€. Biochemistry, 2006, 45, 5261-5270.	2.5	13
68	Role ofÂtheÂyeast ABC transporter Yor1p inÂcadmium detoxification. Biochimie, 2006, 88, 1665-1671.	2.6	47
69	The Binding Mechanism of the Yeast F1-ATPase Inhibitory Peptide. Journal of Biological Chemistry, 2005, 280, 9927-9936.	3.4	20
70	Involvement of the L6–7 Loop in SERCA1a Ca2+-ATPase Activation by Ca2+ (or Sr2+) and ATP. Journal of Biological Chemistry, 2004, 279, 32125-32133.	3.4	15
71	Functional Properties of Sarcoplasmic Reticulum Ca2+-ATPase after Proteolytic Cleavage at Leu119-Lys120, Close to the A-domain. Journal of Biological Chemistry, 2004, 279, 9156-9166.	3.4	36
72	Structural insight into the cooperativity between catalytic and noncatalytic sites of F1-ATPase. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1658, 133-140.	1.0	14

#	Article	IF	CITATIONS
73	A New Method for the Reconstitution of Membrane Proteins into Giant Unilamellar Vesicles. Biophysical Journal, 2004, 87, 419-429.	0.5	227
74	Overcoming the toxicity of membrane peptide expression in bacteria by upstream insertion of Asp-Pro sequence. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1660, 53-65.	2.6	24
75	Involvement of the Cytoplasmic Loop L6â€₹ in the Entry Mechanism for Transport of Ca ²⁺ through the Sarcoplasmic Reticulum Ca ²⁺ â€ATPase. Annals of the New York Academy of Sciences, 2003, 986, 90-95.	3.8	1
76	Purification of SERCA <i>1a</i> Ca ²⁺ â€ATPase Mutants Expressed in Yeast. Annals of the New York Academy of Sciences, 2003, 986, 333-334.	3.8	1
77	Overexpression of SERCA1a Ca ²⁺ â€ATPase in Yeast. Annals of the New York Academy of Sciences, 2003, 986, 312-314.	3.8	2
78	Involvement of the Cytoplasmic Loop L6–7 in the Entry Mechanism for Transport of Ca2+ through the Sarcoplasmic Reticulum Ca2+-ATPase. Journal of Biological Chemistry, 2002, 277, 13016-13028.	3.4	23
79	Overproduction in yeast and rapid and efficient purification of the rabbit SERCA1a Ca2+-ATPase. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1560, 67-83.	2.6	61
80	Sercal Truncated Proteins Unable to Pump Calcium Reduce the Endoplasmic Reticulum Calcium Concentration and Induce Apoptosis. Journal of Cell Biology, 2001, 153, 1301-1314.	5.2	87
81	Clean Western Blots of Membrane Proteins after Yeast Heterologous Expression Following a Shortened Version of the Method of Perini et al Analytical Biochemistry, 2000, 285, 276-278.	2.4	37
82	Hepatitis B virus-related insertional mutagenesis implicates SERCA1 gene in the control of apoptosis. Oncogene, 2000, 19, 2877-2886.	5.9	77
83	Heterologous expression of the red-cell anion exchanger (band 3; AEI). Biochemical Society Transactions, 1999, 27, 917-923.	3.4	8
84	HETEROLOGOUS EXPRESSION OF THE HUMAN RED CELL ANION EXCHANGER (BAND3; AE1). Biochemical Society Transactions, 1999, 27, A141-A141.	3.4	0
85	Ligand Binding to Macromolecules or Micelles: Use of Centrifugal Ultrafiltration to Measure Low-Affinity Binding. Analytical Biochemistry, 1998, 264, 141-148.	2.4	19
86	The Cytoplasmic Loop Located between Transmembrane Segments 6 and 7 Controls Activation by Ca2+ of Sarcoplasmic Reticulum Ca2+-ATPase. Journal of Biological Chemistry, 1998, 273, 20134-20143.	3.4	55
87	Characterization of a Protease-resistant Domain of the Cytosolic Portion of Sarcoplasmic Reticulum Ca2+-ATPase. Journal of Biological Chemistry, 1998, 273, 6619-6631.	3.4	40
88	Probing of the Membrane Topology of Sarcoplasmic Reticulum Ca2+-ATPase with Sequence-specific Antibodies. Journal of Biological Chemistry, 1997, 272, 29015-29032.	3.4	26
89	The Cytoplasmic Loop between Putative Transmembrane Segments 6 and 7 in Sarcoplasmic Reticulum Ca2+-ATPase Binds Ca2+ and Is Functionally Important. Journal of Biological Chemistry, 1997, 272, 17258-17262.	3.4	52
90	Probing of Membrane Topology and Stability of Sarcoplasmic Reticulum Ca2+-ATPase and Na+,K+-ATPase with Sequence-Specific Antibodies. Annals of the New York Academy of Sciences, 1997, 834, 142-145.	3.8	1

#	Article	IF	CITATION
91	Complete Removal and Exchange of Sodium Dodecyl Sulfate Bound to Soluble and Membrane Proteins and Restoration of Their Activities, Using Ceramic Hydroxyapatite Chromatography. Analytical Biochemistry, 1997, 247, 333-341.	2.4	36
92	Functional cell surface expression of the anion transport domain of human red cell band 3 (AE1) in the yeast Saccharomyces cerevisiae Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 12245-12250.	7.1	38
93	Urea Reduces the Aggregation of Membrane Proteins on Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis. Analytical Biochemistry, 1996, 236, 363-364.	2.4	36
94	Expression of the sarcoplasmic reticulum Ca2+-ATPase in yeast. FEBS Letters, 1994, 354, 117-122.	2.8	41
95	Functional nucleotide-binding domain in the F0F1-ATP synthase .alpha. subunit from the yeast Schizosaccharomyces pombe. Biochemistry, 1993, 32, 10387-10397.	2.5	11
96	beta subunit of mitochondrial F1-ATPase from the fission yeast. Deduced sequence of the wild type protein and identification of a mutation that increases nucleotide binding. FEBS Journal, 1991, 200, 61-67.	0.2	8
97	Purification from a yeast mutant of mitochondrial F1 with modified \hat{l}^2 -subunit. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 975, 119-126.	1.0	12
98	A yeast strain with mutated \hat{l}^2 -subunits of mitochondrial ATPase-ATPsynthase: High azide and bicarbonate sensitivity of the ATPase activity. Biochemical and Biophysical Research Communications, 1989, 158, 392-399.	2.1	13
99	Structure-function relationships of mitochondrial ATPase-ATPsynthase using Schizosaccharomyces pombe yeast mutants with altered F1 subunits. Biochimie, 1989, 71, 931-940.	2.6	9
100	Revertant of the yeast Schizosaccharomyces pombe with modified α subunits of mitochondrial ATPase-ATPsynthase: Impaired nucleotide interactions with soluble and membrane-bound enzyme.	2.1	14