Marjo Helander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7065635/publications.pdf

Version: 2024-02-01

81900 74163 6,175 113 39 75 citations g-index h-index papers 116 116 116 4536 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Dark septate endophytes: mutualism from by-products?. Trends in Plant Science, 2022, 27, 247-254.	8.8	32
2	Glyphosate residues alter the microbiota of a perennial weed with a minimal indirect impact on plant performance. Plant and Soil, 2022, 472, 161-174.	3.7	10
3	Quantification of the Potential Impact of Glyphosate-Based Products on Microbiomes. Journal of Visualized Experiments, 2022, , .	0.3	3
4	Does Glyphosate Affect the Human Microbiota?. Life, 2022, 12, 707.	2.4	14
5	Risk in the circular food economy: Glyphosate-based herbicide residues in manure fertilizers decrease crop yield. Science of the Total Environment, 2021, 750, 141422.	8.0	30
6	Glyphosate-Modulated Biosynthesis Driving Plant Defense and Species Interactions. Trends in Plant Science, 2021, 26, 312-323.	8.8	41
7	Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase) for assessing sensitivity of organisms to the herbicide. Journal of Hazardous Materials, 2021, 408, 124556.	12.4	55
8	Adaptation of bacteria to glyphosate: a microevolutionary perspective of the enzyme 5â€enolpyruvylshikimateâ€3â€phosphate synthase. Environmental Microbiology Reports, 2021, 13, 309-316.	2.4	20
9	Epichloë Endophyte-Promoted Seed Pathogen Increases Host Grass Resistance Against Insect Herbivory. Frontiers in Microbiology, 2021, 12, 786619.	3.5	13
10	A Glyphosate-Based Herbicide in Soil Differentially Affects Hormonal Homeostasis and Performance of Non-target Crop Plants. Frontiers in Plant Science, 2021, 12, 787958.	3.6	14
11	Genetic Diversity of the Symbiotic Fungus Epichloë festucae in Naturally Occurring Host Grass Populations. Frontiers in Microbiology, 2021, 12, 756991.	3.5	3
12	Female Preference and Adverse Developmental Effects of Glyphosate-Based Herbicides on Ecologically Relevant Traits in Japanese Quails. Environmental Science & Environmental Science & 2020, 54, 1128-1135.	10.0	27
13	Insect oviposition preference between <i>Epichloë</i> â€symbiotic and <i>Epichloë</i> âfree grasses does not necessarily reflect larval performance. Ecology and Evolution, 2020, 10, 7242-7249.	1.9	3
14	Variation and plasticity in Epichloë alkaloid content of Festuca rubra across Europe. Fungal Ecology, 2020, 47, 100942.	1.6	7
15	Glyphosate-based herbicide affects the composition of microbes associated with Colorado potato beetle (<i>Leptinotarsa decemlineata</i>). FEMS Microbiology Letters, 2020, 367, .	1.8	22
16	Glyphosate-based herbicide has soil-mediated effects on potato glycoalkaloids and oxidative status of a potato pest. Chemosphere, 2020, 258, 127254.	8.2	13
17	Glyphosate-based herbicides influence antioxidants, reproductive hormones and gut microbiome but not reproduction: A long-term experiment in an avian model. Environmental Pollution, 2020, 266, 115108.	7.5	55
18	Toward Comprehensive Plant Microbiome Research. Frontiers in Ecology and Evolution, 2020, 8, .	2,2	35

#	Article	IF	CITATIONS
19	Effects of parental exposure to glyphosate-based herbicides on embryonic development and oxidative status: a long-term experiment in a bird model. Scientific Reports, 2020, 10, 6349.	3.3	34
20	Phenotypic and genetic variation in natural populations of <i>Festuca rubra s.l.</i> in Europe. Plant Ecology and Diversity, 2019, 12, 441-456.	2.4	5
21	Local adaptation in natural European host grass populations with asymmetric symbiosis. PLoS ONE, 2019, 14, e0215510.	2.5	8
22	Effects of a glyphosate-based herbicide on soil animal trophic groups and associated ecosystem functioning in a northern agricultural field. Scientific Reports, 2019, 9, 8540.	3.3	48
23	Postglacial colonization history reflects in the genetic structure of natural populations of Festuca rubra in Europe. Ecology and Evolution, 2019, 9, 3661-3674.	1.9	8
24	Heritable Epichlo \tilde{A} « symbiosis shapes fungal but not bacterial communities of plant leaves. Scientific Reports, 2019, 9, 5253.	3.3	27
25	Glyphosate residues in soil affect crop plant germination and growth. Scientific Reports, 2019, 9, 19653.	3.3	41
26	Effects of a glyphosate-based herbicide on survival and oxidative status of a non-target herbivore, the Colorado potato beetle (Leptinotarsa decemlineata). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 215, 47-55.	2.6	11
27	<i>Epichloë</i> endophyte effects on leaf blotch pathogen (<i>Rhynchosporium</i> sp.) of tall fescue (<i>Schedonorus phoenix</i>) vary among grass origin and environmental conditions. Plant Ecology and Diversity, 2018, 11, 625-635.	2.4	9
28	Glyphosate decreases mycorrhizal colonization and affects plant-soil feedback. Science of the Total Environment, 2018, 642, 285-291.	8.0	87
29	Insect herbivory may cause changes in the visual properties of leaves and affect the camouflage of herbivores to avian predators. Behavioral Ecology and Sociobiology, 2017, 71, 1.	1.4	13
30	Direct and indirect effects of the fungal endophyte Epichlo \tilde{A} « uncinatum on litter decomposition of the host grass, Schedonorus pratensis. Plant Ecology, 2017, 218, 1107-1115.	1.6	16
31	Performance of Endophyte Infected Tall Fescue in Europe and North America. PLoS ONE, 2016, 11, e0157382.	2.5	17
32	Role of foliar fungal endophytes in litter decomposition among species and population origins. Fungal Ecology, 2016, 21, 50-56.	1.6	15
33	Epichloë grass endophytes in sustainable agriculture. Nature Plants, 2016, 2, 15224.	9.3	98
34	No effects of Epichloë endophyte infection on nitrogen cycling in meadow fescue (Schedonorus) Tj ETQq0 0 0	rgBT_/Ove	rlo <u>ck</u> 10 Tf 50
35	Data on litter quality of host grass plants with and without fungal endophytes. Data in Brief, 2016, 7, 1469-1472.	1.0	1
36	Endophytic Epichlo $ ilde{A}$ « species and their grass hosts: from evolution to applications. Plant Molecular Biology, 2016, 90, 665-675.	3.9	125

#	Article	IF	CITATIONS
37	Alkaloid Quantities in Endophyte-Infected Tall Fescue are Affected by the Plant-Fungus Combination and Environment. Journal of Chemical Ecology, 2016, 42, 118-126.	1.8	33
38	Epichloë Fungal Endophytes for Grassland Ecosystems. Sustainable Agriculture Reviews, 2016, , 233-305.	1.1	44
39	Geographic Variation in Festuca rubra L. Ploidy Levels and Systemic Fungal Endophyte Frequencies. PLoS ONE, 2016, 11, e0166264.	2.5	12
40	Nutritional niche overlap potentiates the use of endophytes in biocontrol of a tree disease. BioControl, 2015, 60, 655-667.	2.0	79
41	Effects of systemic fungal endophytes on the performance of meadow fescue and tall fescue in mixtures with red clover. Grass and Forage Science, 2015, 70, 465-473.	2.9	13
42	Epichloë Endophytes Alter Inducible Indirect Defences in Host Grasses. PLoS ONE, 2014, 9, e101331.	2.5	33
43	Silicon, endophytes and secondary metabolites as grass defenses against mammalian herbivores. Frontiers in Plant Science, 2014, 5, 478.	3.6	53
44	Development and Characterization of Nuclear Microsatellite Markers in the Endophytic FungusEpichloë festucae(Clavicipitaceae). Applications in Plant Sciences, 2014, 2, 1400093.	2.1	3
45	Development and Characterization of Chloroplast Microsatellite Markers in a Fine-Leaved Fescue, Festuca rubra (Poaceae). Applications in Plant Sciences, 2014, 2, 1400094.	2.1	3
46	Systemic fungal endophytes and ploidy level in Festuca vivipara populations in North European Islands. Plant Systematics and Evolution, 2014, 300, 1683-1691.	0.9	2
47	Fungal endophyte mediated occurrence of seminiferous and pseudoviviparous panicles in Festuca rubra. Fungal Diversity, 2014, 66, 69-76.	12.3	0
48	Non-systemic fungal endophytes in Festuca rubra plants infected by Epichloë festucae in subarctic habitats. Fungal Diversity, 2013, 60, 25-32.	12.3	31
49	Fungal endophytes help prevent weed invasions. Agriculture, Ecosystems and Environment, 2013, 165, 1-5.	5.3	54
50	Symbiotic interactions as drivers of trade-offs in plants: effects of fungal endophytes on tall fescue. Fungal Diversity, 2013, 60, 5-14.	12.3	17
51	Neotyphodium fungal endophyte in tall fescue (Schedonorus phoenix): a comparison of three Northern European wild populations and the cultivar Kentucky-31. Fungal Diversity, 2013, 60, 15-24.	12.3	22
52	Symbiotically modified organisms: nontoxic fungal endophytes in grasses. Trends in Plant Science, 2013, 18, 420-427.	8.8	72
53	Chemical Ecology Mediated by Fungal Endophytes in Grasses. Journal of Chemical Ecology, 2013, 39, 962-968.	1.8	165
54	Efficient analysis of ploidy levels in plant evolutionary ecology. Caryologia, 2013, 66, 251-256.	0.3	11

#	Article	IF	Citations
55	Endophytic fungi and silica content of different bamboo species in giant panda diet. Symbiosis, 2013, 61, 13-22.	2.3	10
56	Resistance to Dutch Elm Disease Reduces Presence of Xylem Endophytic Fungi in Elms (Ulmus spp.). PLoS ONE, 2013, 8, e56987.	2.5	76
57	Glyphosate in northern ecosystems. Trends in Plant Science, 2012, 17, 569-574.	8.8	162
58	Antioxidants in Festuca rubra L. seeds affected by the fungal symbiont Epichloë festucae. Symbiosis, 2012, 58, 73-80.	2.3	14
59	Phenolic Compounds of the Inner Bark of Betula pendula: Seasonal and Genetic Variation and Induction by Wounding. Journal of Chemical Ecology, 2012, 38, 1410-1418.	1.8	19
60	Climate change-driven species' range shifts filtered by photoperiodism. Nature Climate Change, 2012, 2, 239-242.	18.8	132
61	Characterization of phenolic compounds from inner bark of <i>Betula pendula</i> . Holzforschung, 2012, 66, 171-181.	1.9	32
62	Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Diversity, 2012, 54, 1-10.	12.3	251
63	Responses of Foliar Endophytes to Pollution. Forestry Sciences, 2011, , 175-188.	0.4	5
64	Environmental conditions and host plant origin override endophyte effects on invertebrate communities. Fungal Diversity, 2011, 47, 109-118.	12.3	39
65	The Effects of Endophytes on Seed Production and Seed Predation of Tall Fescue and Meadow Fescue. Microbial Ecology, 2010, 60, 928-934.	2.8	35
66	Defensive mutualism between plants and endophytic fungi?. Fungal Diversity, 2010, 41, 101-113.	12.3	216
67	Fungal endophytes reduce regrowth and affect competitiveness of meadow fescue in early succession of pastures. Grass and Forage Science, 2010, 65, 287-295.	2.9	9
68	Genetic Compatibility Determines Endophyte-Grass Combinations. PLoS ONE, 2010, 5, e11395.	2.5	80
69	Fungal-Mediated Multitrophic Interactions - Do Grass Endophytes in Diet Protect Voles from Predators?. PLoS ONE, 2010, 5, e9845.	2.5	18
70	Variable effects of endophytic fungus on seedling establishment of fine fescues. Oecologia, 2009, 159, 49-57.	2.0	37
71	High variation in frequency of infection by endophytes in cultivars of meadow fescue in Finland. Grass and Forage Science, 2009, 64, 169-176.	2.9	17
72	Consumption of grass endophytes alters the ultraviolet spectrum of vole urine. Oecologia, 2008, 156, 333-340.	2.0	18

#	Article	IF	CITATIONS
73	Endophyte infection, nutrient status of the soil and duration of snow cover influence the performance of meadow fescue in subâ€artic conditions. Grass and Forage Science, 2008, 63, 324-330.	2.9	20
74	Fragmented environment affects birch leaf endophytes. New Phytologist, 2007, 175, 547-553.	7.3	78
75	Occurrence and Genetic Structure of the Systemic Grass Endophyte Epichloë festucae in Fine Fescue Populations. Microbial Ecology, 2007, 53, 20-29.	2.8	42
76	Birch leaf endophytes in managed and natural boreal forests. Canadian Journal of Forest Research, 2006, 36, 3239-3245.	1.7	27
77	Endophytic fungus decreases plant virus infections in meadow ryegrass (Lolium pratense). Biology Letters, 2006, 2, 620-623.	2.3	56
78	Susceptibility of endophyte-infected grasses to winter pathogens (snow molds). Canadian Journal of Botany, 2006, 84, 1043-1051.	1.1	56
79	Model systems in ecology: dissecting the endophyte–grass literature. Trends in Plant Science, 2006, 11, 428-433.	8.8	265
80	Transfer of endophyte-origin defensive alkaloids from a grass to a hemiparasitic plant. Ecology Letters, 2005, 8, 1256-1263.	6.4	52
81	Leaf surface traits: overlooked determinants of birch resistance to herbivores and foliar micro-fungi?. Trees - Structure and Function, 2005, 19, 191-197.	1.9	59
82	Are endophyte-mediated effects on herbivores conditional on soil nutrients?. Oecologia, 2005, 142, 38-45.	2.0	84
83	Asexual Neotyphodium endophytes in a native grass reduce competitive abilities. Ecology Letters, 2004, 7, 304-313.	6.4	112
84	Evolution of endophyte?plant symbioses. Trends in Plant Science, 2004, 9, 275-280.	8.8	521
85	ENVIRONMENTAL CONDITIONS AND HOST GENOTYPE DIRECT GENETIC DIVERSITY OF VENTURIA DITRICHA, A FUNGAL ENDOPHYTE OF BIRCH TREES. Evolution; International Journal of Organic Evolution, 2002, 56, 1566.	2.3	3
86	Vertically transmitted fungal endophytes: different responses of host-parasite systems to environmental conditions. Oikos, 2002, 99, 173-183.	2.7	132
87	Micro-fungi and invertebrate herbivores on birch trees: fungal mediated plant-herbivore interactions or responses to host quality?. Ecology Letters, 2002, 5, 648-655.	6.4	38
88	ENVIRONMENTAL CONDITIONS AND HOST GENOTYPE DIRECT GENETIC DIVERSITY OF VENTURIA DITRICHA, A FUNGAL ENDOPHYTE OF BIRCH TREES. Evolution; International Journal of Organic Evolution, 2002, 56, 1566-1573.	2.3	70
89	Experimental testing of rust fungus-mediated herbivory resistance in Betula pendula. Forest Pathology, 2001, 31, 321-329.	1.1	10
90	Endophytic fungi in wild and cultivated grasses in Finland. Ecography, 2000, 23, 360-366.	4.5	91

#	Article	IF	Citations
91	Genetic and Environmental Variation in Rust Frequency on Mature Mountain Birch Trees. Scandinavian Journal of Forest Research, 2000, 15, 510-522.	1.4	9
92	Endophytic fungi in wild and cultivated grasses in Finland. Ecography, 2000, 23, 360-366.	4.5	30
93	Defoliation and mycorrhizal symbiosis: a functional balance between carbon sources and below-ground sinks. Ecology Letters, 1999, 2, 19-26.	6.4	79
94	Birch family and environmental conditions affect endophytic fungi in leaves. Oecologia, 1999, 118, 151-156.	2.0	66
95	Endophyte-grass-herbivore interactions: the case of Neotyphodium endophytes in Arizona fescue populations. Oecologia, 1999, 121, 411-420.	2.0	98
96	Evidence for resistance of mountain birch (Betula pubescens ssp. czerepanovii) to birch rust (Melampsoridium betulinum). Mycological Research, 1998, 102, 63-66.	2.5	14
97	FUNGAL ENDOPHYTES: A Continuum of Interactions with Host Plants. Annual Review of Ecology, Evolution, and Systematics, 1998, 29, 319-343.	6.7	866
98	Effects of air pollution and other environmental factors on birch pollen allergens. Allergy: European Journal of Allergy and Clinical Immunology, 1997, 52, 1207-1214.	5.7	49
99	The role of foliar microfungi in mountain birch - insect herbivore relationships. Ecography, 1997, 20, 116-122.	4.5	24
100	Trends of some airborne tree pollen in the Nordic countries and Austria, 1980—1993. Grana, 1996, 35, 171-178.	0.8	67
101	Endophyteâ€mediated interactions between woody plants and insect herbivores?. Entomologia Experimentalis Et Applicata, 1996, 80, 269-271.	1.4	37
102	The performance of the autumnal moth is lower on trees infected by birch rust. Mycological Research, 1995, 99, 994-996.	2.5	23
103	Variation in airborne urediniospore concentration of Melampsoridium betulinum. Aerobiologia, 1995, 11, 259-264.	1.7	4
104	Responses of pine needle endophytes to air pollution. New Phytologist, 1995, 131, 223-229.	7.3	31
105	Endophytic fungi in Scots pine needles: spatial variation and consequences of simulated acid rain. Canadian Journal of Botany, 1994, 72, 1108-1113.	1.1	63
106	Birch pollen production, transport and deposition for the period 1984–1993 at Kevo, northernmost Finland. Aerobiologia, 1994, 10, 183-191.	1.7	32
107	Simulated acid rain affects birch leaf endophyte populations. Microbial Ecology, 1993, 26, 227-34.	2.8	74
108	Responses of phyllosphere microfungi to simulated sulphuric and nitric acid deposition. Mycological Research, 1993, 97, 533-537.	2.5	25

#	Article	IF	CITATIONS
109	Does cutting of mugwort stands affect airborne pollen concentrations?. Allergy: European Journal of Allergy and Clinical Immunology, 1992, 47, 388-390.	5.7	8
110	Circadian periodicity of airborne pollen and spores; significance of sampling height. Aerobiologia, 1991, 7, 129-135.	1.7	37
111	Effects of watering and simulated acid rain on quantity of phyllosphere fungi of birch leaves. Microbial Ecology, 1990, 19, 119-125.	2.8	22
112	Comparison of some pollen concentrations in Finland and the Estonian SSR. Aerobiologia, 1989, 5, 94-103.	1.7	3
113	Glyphosate residues in soil can modify plant resistance to herbivores through changes in leaf quality Plant Biology, 0, , .	3.8	3