Nissim Kanekar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7064810/publications.pdf

Version: 2024-02-01

206112 126907 2,811 95 33 48 citations h-index g-index papers 97 97 97 1852 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Fast Radio Burst Progenitor Born in a Galaxy Merger. Astrophysical Journal Letters, 2022, 925, L20.	8.3	7
2	Redshift evolution of the H‹I detection rate in radio-loud active galactic nuclei. Astronomy and Astrophysics, 2022, 659, A185.	5.1	3
3	CO excitation and line energy distributions in gas-selected galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2346-2355.	4.4	4
4	Insufficient Gas Accretion Caused the Decline in Cosmic Star-formation Activity Eight Billion Years Ago. Astrophysical Journal Letters, 2022, 931, L34.	8.3	8
5	A Green Pea Starburst Arising from a Galaxy–Galaxy Merger. Astrophysical Journal Letters, 2022, 933, L11.	8.3	2
6	Jansky Very Large Array Detections of CO(1–0) Emission in H i-absorption-selected Galaxies at z ≳ 2. Astrophysical Journal Letters, 2022, 933, L42.	8.3	4
7	The Atomic Gas Mass of Green Pea Galaxies. Astrophysical Journal Letters, 2021, 913, L15.	8.3	7
8	Giant Metrewave Radio Telescope Detection of Hi 21 cm Emission from Star-forming Galaxies at z \hat{a} % 1.3. Astrophysical Journal Letters, 2021, 913, L24.	8.3	24
9	Atomic Hydrogen in Distant Galaxies. Resonance, 2021, 26, 919-938.	0.3	1
10	A study of submillimeter methanol absorption toward PKS 1830â^211:. Astronomy and Astrophysics, 2021, 652, A5.	5.1	10
11	The Nature of Hi-absorption-selected Galaxies at z â‰^ 4. Astrophysical Journal, 2021, 921, 68.	4.5	7
12	HÂi 21-centimetre emission from an ensemble of galaxies at an average redshift of one. Nature, 2020, 586, 369-372.	27.8	55
13	A cold, massive, rotating disk galaxy 1.5 billion years after the Big Bang. Nature, 2020, 581, 269-272.	27.8	71
14	Giant Metrewave Radio Telescope Detections of Two High-opacity Hi 21 cm Absorbers at zÂâ‰^Â1.2. Astrophysical Journal Letters, 2020, 900, L30.	8.3	15
15	High Molecular Gas Masses in Absorption-selected Galaxies at zÂâ‰^Â2. Astrophysical Journal Letters, 2020, 901, L5.	8.3	14
16	Linking gas and galaxies at high redshift: MUSE surveys the environments of six damped Lyl± systems at z â‰^ 3. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5070-5096.	4.4	33
17	Atomic Hydrogen in Star-forming Galaxies at Intermediate Redshifts. Astrophysical Journal Letters, 2019, 882, L7.	8.3	41
18	H <scp>i</scp> 21 cm mapping of the host galaxy of AT2018cow: a fast-evolving luminous transient within a ring of high column density gas. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 485, L93-L97.	3.3	17

#	Article	IF	CITATIONS
19	The host galaxy of GRB 980425/SN1998bw: a collisional ring galaxy. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5411-5422.	4.4	17
20	ALMA C ii 158 μm Imaging of an H i-selected Major Merger at zÂâ^¼Â4. Astrophysical Journal Letters, 2019, 886, L35.	' 8.3	10
21	The expanded Giant Metrewave Radio Telescope. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3007-3021.	4.4	6
22	[C ii] 158 μm Emission from zÂâ^¼Â4 H i Absorption-selected Galaxies. Astrophysical Journal Letters, 2019, 870, L19.	8.3	28
23	A Giant Metrewave Radio Telescope search for associated H i 21 cm absorption in GHz-peaked-spectrum sources. Monthly Notices of the Royal Astronomical Society, 2018, 473, 59-67.	4.4	32
24	Massive, Absorption-selected Galaxies at Intermediate Redshifts. Astrophysical Journal Letters, 2018, 856, L23.	8.3	27
25	Stringent Constraints on Fundamental Constant Evolution Using Conjugate 18Âcm Satellite OH Lines. Physical Review Letters, 2018, 120, 061302.	7.8	17
26	Statistical properties of Faraday rotation measure in external galaxies $\hat{a} \in \text{``I.}$ Intervening disc galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2528-2546.	4.4	14
27	ALMA observations of a metal-rich damped LyÂl \pm absorber at z = 2.5832: evidence for strong galactic winds in a galaxy group. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2126-2132.	4.4	19
28	The gas and stellar mass of low-redshift damped Lyman-α absorbers. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L54-L58.	3.3	8
29	Probing Star Formation in Galaxies at zÂâ‰^Â1 via a Giant Metrewave Radio Telescope Stacking Analysis. Astrophysical Journal, 2018, 865, 39.	4.5	11
30	ALMA Observations of Molecular Absorption in the Gravitational Lens PMN 0134â^'0931 at zÂ=Â0.7645. Astrophysical Journal, 2018, 864, 73.	4.5	12
31	Molecular Emission from a Galaxy Associated with a z â ¹ /4 2.2 Damped Lyα Absorber. Astrophysical Journal Letters, 2018, 856, L12.	8.3	31
32	Detection of the Galactic warm neutral medium in H <scp>i</scp> 21-cm absorption. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 479, L7-L11.	3.3	5
33	A Giant Metrewave Radio Telescope survey for associated H i 21 cm absorption in the Caltech–Jodrell flat-spectrum sample. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1578-1596.	4.4	24
34	ALMA + VLT observations of a damped Lyman- \hat{l}_{\pm} absorbing galaxy: massive, wide CO emission, gas-rich but with very low SFR. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4039-4055.	4.4	27
35	[C <scp>ii</scp>] 158- \hat{l} 4m emission from the host galaxies of damped Lyman-alpha systems. Science, 2017, 355, 1285-1288.	12.6	50
36	Giant Metrewave Radio Telescope Monitoring of the Black Hole X-Ray Binary, V404 Cygni during Its 2015 June Outburst. Astrophysical Journal, 2017, 846, 111.	4.5	18

3

#	Article	IF	CITATIONS
37	Giant Metrewave Radio Telescope detection of associated H i 21-cm absorption at <i>z</i> Â=Â1.2230 towards TXSÂ1954+513. Monthly Notices of the Royal Astronomical Society, 2017, 465, 5011-5015.	4.4	21
38	The Upgraded GMRT:Opening New Windows on the Radio Universe. Current Science, 2017, 113, 707.	0.8	174
39	THE GAS MASS OF STAR-FORMING GALAXIES AT z â‰^ 1.3. Astrophysical Journal Letters, 2016, 818, L28.	8.3	45
40	INVISIBLE ACTIVE GALACTIC NUCLEI. II. RADIO MORPHOLOGIES AND FIVE NEW H i 21 cm ABSORPTION LINE DETECTORS. Astronomical Journal, 2016, 151, 74.	4.7	19
41	FIRST CONNECTION BETWEEN COLD GAS IN EMISSION AND ABSORPTION: CO EMISSION FROM A GALAXY–QUASAR PAIR. Astrophysical Journal Letters, 2016, 820, L39.	8.3	31
42	A Giant Metrewave Radio Telescope search for associated H i 21Âcm absorption in high-redshift flat-spectrum sources. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4000-4012.	4.4	31
43	THE H i CONTENT OF THE UNIVERSE OVER THE PAST 10 GYR. Astrophysical Journal, 2016, 818, 113.	4.5	74
44	A NEW CONSTRAINT ON THE MOLECULAR OXYGEN ABUNDANCE AT <i>z</i> $\hat{a}^{1}/4$ 0.886. Astrophysical Journal Letters, 2015, 811, L23.	8.3	4
45	ON DETECTING MILLISECOND PULSARS AT THE GALACTIC CENTER. Astrophysical Journal, 2015, 805, 172.	4.5	38
46	Constraints on changes in the proton–electron mass ratio using methanol lines. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 448, L104-L108.	3.3	40
47	A search for Hα emission in high-metallicity damped Lyman α systems at zÂâ^¼Â2.4. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2832-2839.	4.4	7
48	Directly imaging damped Ly $\hat{l}\pm$ galaxies at z > 2 \hat{a} \in III. The star formation rates of neutral gas reservoirs at z \hat{a} \hat{l} 2.7. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3178-3198.	4.4	66
49	First measurement of HÂ <scp>i</scp> 21Âcm emission from a GRB host galaxy indicates a post-merger system. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 454, L51-L55.	3.3	27
50	GIANT METREWAVE RADIO TELESCOPE DETECTION OF TWO NEW H I 21 cm ABSORBERS AT <i>z</i> â‰^ 2. Astrophysical Journal Letters, 2014, 797, L20.	8.3	15
51	A BLIND GREEN BANK TELESCOPE MILLIMETER-WAVE SURVEY FOR REDSHIFTED MOLECULAR ABSORPTION. Astrophysical Journal, 2014, 782, 56.	4.5	8
52	The spin temperature of high-redshift damped Lyman \hat{l}_{\pm} systems. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2131-2166.	4.4	95
53	Directly imaging damped Lyl± galaxies at zÂ>Â2 – II. Imaging and spectroscopic observations of 32 quasar fields. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1282-1300.	4.4	33
54	Constraints on the gas masses of low- $\langle i \rangle z \langle i \rangle$ damped Lyman \hat{l}_{\pm} systems. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 443, L29-L33.	3.3	3

#	Article	IF	Citations
55	The temperature of the diffuse H i in the Milky Way - II. Gaussian decomposition of the H i-21 cm absorption spectra. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2366-2385.	4.4	38
56	The temperature of the diffuse H i in the Milky Way – I. High resolution H i-21 cm absorption stud Monthly Notices of the Royal Astronomical Society, 2013, 436, 2352-2365.	lies. 4.4	39
57	A search for H i 21Âcm absorption towards a radio-selected quasar sample – II. A new low spin temperature DLA at high redshift. Monthly Notices of the Royal Astronomical Society, 2013, 428, 532-539.	4.4	15
58	Probing fundamental constant evolution with redshifted spectral lines., 2012,, 51-75.		0
59	CONSTRAINING FUNDAMENTAL CONSTANT EVOLUTION WITH H I AND OH LINES. Astrophysical Journal Letters, 2012, 746, L16.	8.3	50
60	Hâ€fi content, metallicities and spin temperatures of damped and sub-damped Lyl̂± systems in the redshift desert (0.6 < zabs < 1.7)â⁻ Monthly Notices of the Royal Astronomical Society, 2012, 424, 293-312.	4.4	34
61	AN H I COLUMN DENSITY THRESHOLD FOR COLD GAS FORMATION IN THE GALAXY. Astrophysical Journal Letters, 2011, 737, L33.	8.3	45
62	CONSTRAINING CHANGES IN THE PROTON-ELECTRON MASS RATIO WITH INVERSION AND ROTATIONAL LINES. Astrophysical Journal Letters, 2011, 728, L12.	8.3	84
63	PROBING FUNDAMENTAL CONSTANT EVOLUTION WITH REDSHIFTED CONJUGATE-SATELLITE OH LINES. Astrophysical Journal Letters, 2010, 716, L23-L26.	8.3	28
64	A HIGH-FREQUENCY SEARCH FOR PULSARS WITHIN THE CENTRAL PARSEC OF Sgr A*. Astrophysical Journal, 2010, 715, 939-946.	4.5	70
65	PROBING FUNDAMENTAL CONSTANT EVOLUTION WITH NEUTRAL ATOMIC GAS LINES. Astrophysical Journal Letters, 2010, 712, L148-L152.	8.3	23
66	A METALLICITY-SPIN TEMPERATURE RELATION IN DAMPED Lyα SYSTEMS. Astrophysical Journal, 2009, 705, L40-L44.	4.5	36
67	A search for Hâ€fi 21â€fcm absorption in strong Mgâ€fii absorbers in the redshift desert. Monthly Notices of the Royal Astronomical Society, 2009, 396, 385-401.	4.4	56
68	The covering factor of high-redshift damped Lyman-α systems. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 394, L61-L65.	3.3	36
69	Probing fundamental constant evolution with redshifted radio lines. Proceedings of the International Astronomical Union, 2009, 5, 323-323.	0.0	0
70	Outflowing atomic and molecular gas at $\langle i \rangle z \langle i \rangle \hat{a}^1 / 4$ 0.67 towards 1504 + 377. Monthly Notices of the Royal Astronomical Society: Letters, 2008, 384, L6-L10.	3.3	16
71	A search for damped Lyman systems towards radio-loud quasars I: the optical survey. Monthly Notices of the Royal Astronomical Society, 2008, , ???-???.	4.4	6
72	DO THE FUNDAMENTAL CONSTANTS CHANGE WITH TIME?. Modern Physics Letters A, 2008, 23, 2711-2725.	1.2	13

#	Article	IF	CITATIONS
73	HI 21 cm Absorption Studies: Prospects. AIP Conference Proceedings, 2008, , .	0.4	O
74	Hâ€ f i 21-cm absorption at zâ^¼ 3.39 towards PKS 0201+113. Monthly Notices of the Royal Astronomical Society, 2007, 375, 1528-1536.	4.4	36
75	Discovery of 21-cm absorption in a zabs = 2.289 damped Lyman \hat{A} system towards TXS 0311+430: the first low spin temperature absorber at z > 1. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 382, L53-L57.	3.3	30
76	H I 21 cm absorption at z \hat{A} 2.347 towards PKS B0438-436. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 370, L46-L50.	3.3	36
77	HI 21cm absorption studies of damped Lyman-\$alpha\$ systems. Proceedings of the International Astronomical Union, 2005, 1, 156-161.	0.0	1
78	The strange case of a sub-DLA with very little HI. Astronomy and Astrophysics, 2005, 429, L51-L54.	5.1	7
79	Constraints on Changes in Fundamental Constants from a Cosmologically Distant OH Absorber or Emitter. Physical Review Letters, 2005, 95, 261301.	7.8	99
80	Conjugate 18Âcm OH Satellite Lines at a Cosmological Distance. Physical Review Letters, 2004, 93, 051302.	7.8	36
81	21-cm absorption studies with the Square Kilometer Array. New Astronomy Reviews, 2004, 48, 1259-1270.	12.8	39
82	Detection of OH and wide $\text{H}\hat{a} \in f$ i absorption toward B0218+357. Monthly Notices of the Royal Astronomical Society, 2003, 345, L7-L11.	4.4	33
83	The temperature of the warm neutral medium in the Milky Way. Monthly Notices of the Royal Astronomical Society, 2003, 346, L57-L61.	4.4	35
84	Constraining the Variation of Fundamental Constants using 18Âcm OH Lines. Physical Review Letters, 2003, 91, 241302.	7.8	56
85	A deep search for 21-cm absorption in high redshift damped Lyman-αsystems. Astronomy and Astrophysics, 2003, 399, 857-868.	5.1	110
86	HI absorption in a gravitational lens at $z \sim 0.7645$. Astronomy and Astrophysics, 2003, 412, L29-L32.	5.1	28
87	Molecular gas at intermediate redshifts. Astronomy and Astrophysics, 2002, 381, L73-L76.	5.1	44
88	HI 21Âcm imaging of a nearby damped Lyman-α system. Astronomy and Astrophysics, 2002, 388, 383-388.	5.1	24
89	A new 21-cm absorber identified with an \$L sim L^star\$ galaxy. Astronomy and Astrophysics, 2002, 382, 838-842.	5.1	13
90	ATCA search for 21 cm emission from a candidate damped Ly- \hat{l} +absorber at $\{vec\ z\} = 0.101$ \$. Astronomy and Astrophysics, 2001, 367, 46-50.	5.1	23

#	ARTICLE	IF	CITATION
91	HI 21 cm absorption in low \$vec z\$ damped Lyman-αsystems. Astronomy and Astrophysics, 2001, 369, 42-48.	5.1	51
92	Implications of 21-cm observations for damped Ly \hat{A} systems. Monthly Notices of the Royal Astronomical Society, 2000, 318, 303-308.	4.4	62
93	The nature of low redshift damped Ly-α systems. Pramana - Journal of Physics, 1999, 53, 1013-1019.	1.8	0
94	ORT observations of the damped Lyman \hat{l}_{\pm} system towards PKS 0201 + 113. Monthly Notices of the Royal Astronomical Society, 1997, 292, 831-834.	4.4	15
95	Directly imaging damped Lyman α galaxies at zâ€f>â€f2 - I. Methodology and first resultsâ⁻ Monthly Notic of the Royal Astronomical Society, 0, 408, 362-382.	ces _{4.4}	33