
Larry G Higgins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7063621/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of the effects of sodium phenobarbital in wild type and humanized constitutive androstane receptor (CAR)/pregnane X receptor (PXR) mice and in cultured mouse, rat and human hepatocytes. Toxicology, 2018, 396-397, 23-32.	4.2	17
2	Mode of action and human relevance of THF-induced mouse liver tumors. Toxicology Letters, 2017, 276, 138-143.	0.8	15
3	PPARαls Required for PPARÎ′Action in Regulation of Body Weight and Hepatic Steatosis in Mice. PPAR Research, 2015, 2015, 1-15.	2.4	38
4	Conditional Expression of Human PPARδand a Dominant Negative Variant of hPPARδ In Vivo. PPAR Research, 2012, 2012, 1-12.	2.4	4
5	Analysis of the role of Nrf2 in the expression of liver proteins in mice using two-dimensional gel-based proteomics. Pharmacological Reports, 2012, 64, 680-697.	3.3	37
6	Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metabolism Reviews, 2011, 43, 92-137.	3.6	178
7	REMOVED: PPARÎ \pm and PPARδ nuclear receptor regulation of body weight and hepatic steatosis. Toxicology, 2011, 290, 135.	4.2	0
8	The cap'n'collar transcription factor Nrf2 mediates both intrinsic resistance to environmental stressors and an adaptive response elicited by chemopreventive agents that determines susceptibility to electrophilic xenobiotics. Chemico-Biological Interactions, 2011, 192, 37-45.	4.0	42
9	Proteomic analysis of Nrf2 deficient transgenic mice reveals cellular defence and lipid metabolism as primary Nrf2-dependent pathways in the liver. Journal of Proteomics, 2010, 73, 1612-1631.	2.4	144
10	Activation of the NRF2 Signaling Pathway by Copper-Mediated Redox Cycling of Para- and Ortho-Hydroquinones. Chemistry and Biology, 2010, 17, 75-85.	6.0	94
11	Expression and Localization of Rat Aldo-Keto Reductases and Induction of the 1B13 and 1D2 Isoforms by Phenolic Antioxidants. Drug Metabolism and Disposition, 2010, 38, 341-346.	3.3	8
12	Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1–NRF2 pathway, and not the BACH1–NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds. Carcinogenesis, 2009, 30, 1571-1580.	2.8	273
13	Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents. Toxicology and Applied Pharmacology, 2009, 237, 267-280.	2.8	152
14	Induction of sulfiredoxin expression and reduction of peroxiredoxin hyperoxidation by the neuroprotective Nrf2 activator 3Hâ€1,2â€dithioleâ€3â€thione. Journal of Neurochemistry, 2008, 107, 533-543.	3.9	115
15	Induction of cancer chemopreventive enzymes by coffee is mediated by transcription factor Nrf2. Evidence that the coffee-specific diterpenes cafestol and kahweol confer protection against acrolein. Toxicology and Applied Pharmacology, 2008, 226, 328-337.	2.8	112
16	Reduction in Antioxidant Defenses may Contribute to Ochratoxin A Toxicity and Carcinogenicity. Toxicological Sciences, 2006, 96, 30-39.	3.1	130
17	Transcription Factor Nrf2 Is Essential for Induction of NAD(P)H:Quinone Oxidoreductase 1, Glutathione S-Transferases, and Glutamate Cysteine Ligase by Broccoli Seeds and Isothiocyanates. Journal of Nutrition, 2004, 134, 3499S-3506S.	2.9	181