Zhen Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7063336/publications.pdf

Version: 2024-02-01

257450 276875 1,849 41 48 24 citations h-index g-index papers 53 53 53 2074 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The function of CD146 in human annulus fibrosus cells and mechanism of the regulation by TGFâ€Î². Journal of Orthopaedic Research, 2022, 40, 1661-1671.	2.3	3
2	Small molecules of herbal origin for osteoarthritis treatment: in vitro and in vivo evidence. Arthritis Research and Therapy, 2022, 24, 105.	3.5	10
3	Neoepitope fragments as biomarkers for different phenotypes of intervertebral disc degeneration. JOR Spine, 2022, 5, .	3.2	2
4	Small molecule-based treatment approaches for intervertebral disc degeneration: Current options and future directions. Theranostics, 2021, 11, 27-47.	10.0	101
5	One strike loading organ culture model to investigate the post-traumatic disc degenerative condition. Journal of Orthopaedic Translation, 2021, 26, 141-150.	3.9	21
6	Angiotensin II Type 1 Receptor Antagonist Losartan Inhibits TNF-α-Induced Inflammation and Degeneration Processes in Human Nucleus Pulposus Cells. Applied Sciences (Switzerland), 2021, 11, 417.	2.5	2
7	The Tissue Renin-Angiotensin System and Its Role in the Pathogenesis of Major Human Diseases: Quo Vadis?. Cells, 2021, 10, 650.	4.1	31
8	Transcriptional profiling of intervertebral disc in a postâ€traumatic early degeneration organ culture model. JOR Spine, 2021, 4, e1146.	3.2	4
9	Noninvasive multimodal fluorescence and magnetic resonance imaging of whole-organ intervertebral discs. Biomedical Optics Express, 2021, 12, 3214.	2.9	5
10	Effect of cyclic mechanical loading on immunoinflammatory microenvironment in biofabricating hydroxyapatite scaffold for bone regeneration. Bioactive Materials, 2021, 6, 3097-3108.	15.6	29
11	Establishment of an Ex Vivo Inflammatory Osteoarthritis Model With Human Osteochondral Explants. Frontiers in Bioengineering and Biotechnology, 2021, 9, 787020.	4.1	3
12	Advances in basic and preclinical spine research: Highlights from the Chinese Spine Research Community. JOR Spine, 2021, 4, e1188.	3.2	0
13	Effect of the CCL5-Releasing Fibrin Gel for Intervertebral Disc Regeneration. Cartilage, 2020, 11, 169-180.	2.7	22
14	Intervertebral disc organ culture for the investigation of disc pathology and regeneration – benefits, limitations, and future directions of bioreactors. Connective Tissue Research, 2020, 61, 304-321.	2.3	30
15	Mechanical and biological characterization of a composite annulus fibrosus repair strategy in an endplate delamination model. JOR Spine, 2020, 3, e1107.	3.2	8
16	Proinflammatory intervertebral disc cell and organ culture models induced by tumor necrosis factor alpha. JOR Spine, 2020, 3, e1104.	3.2	23
17	Identification and Characterization of Serum microRNAs as Biomarkers for Human Disc Degeneration: An RNA Sequencing Analysis. Diagnostics, 2020, 10, 1063.	2.6	5
18	Bioprinting Tissue Analogues with Decellularized Extracellular Matrix Bioink for Regeneration and Tissue Models of Cartilage and Intervertebral Discs. Advanced Functional Materials, 2020, 30, 1909044.	14.9	48

#	Article	IF	CITATIONS
19	Preclinical ex-vivo Testing of Anti-inflammatory Drugs in a Bovine Intervertebral Degenerative Disc Model. Frontiers in Bioengineering and Biotechnology, 2020, 8, 583.	4.1	26
20	Morphological and biomechanical effects of annulus fibrosus injury and repair in an ovine cervical model. JOR Spine, 2020, 3, e1074.	3.2	22
21	Interaction between Stem Cells and the Microenvironment for Musculoskeletal Repair. Stem Cells International, 2020, 2020, 1-3.	2.5	24
22	Fibrin-Hyaluronic Acid Hydrogel (RegenoGel) with Fibroblast Growth Factor-18 for In Vitro 3D Culture of Human and Bovine Nucleus Pulposus Cells. International Journal of Molecular Sciences, 2019, 20, 5036.	4.1	18
23	Kartogenin hydrolysis product 4-aminobiphenyl distributes to cartilage and mediates cartilage regeneration. Theranostics, 2019, 9, 7108-7121.	10.0	25
24	CD146/MCAM distinguishes stem cell subpopulations with distinct migration and regenerative potential in degenerative intervertebral discs. Osteoarthritis and Cartilage, 2019, 27, 1094-1105.	1.3	37
25	Regulation of Inflammatory Response in Human Osteoarthritic Chondrocytes by Novel Herbal Small Molecules. International Journal of Molecular Sciences, 2019, 20, 5745.	4.1	19
26	An intervertebral disc whole organ culture system to investigate proinflammatory and degenerative disc disease condition. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e2051-e2061.	2.7	55
27	A Stratified Algorithm for Skull Base Reconstruction With Endoscopic Endonasal Approach. Journal of Craniofacial Surgery, 2018, 29, 193-198.	0.7	14
28	Isolation of highâ \in quality RNA from intervertebral disc tissue via pronase predigestion and tissue pulverization. JOR Spine, 2018, 1, e1017.	3.2	21
29	Biomaterials for intervertebral disc regeneration: Current status and looming challenges. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 2188-2202.	2.7	55
30	Intervertebral Disc Whole Organ Cultures. , 2018, , 67-101.		0
31	Heterodimeric BMPâ€2/7 for nucleus pulposus regeneration—In vitro and ex vivo studies. Journal of Orthopaedic Research, 2017, 35, 51-60.	2.3	45
32	Injectable hyaluronic acid down-regulates interferon signaling molecules, IGFBP3 and IFIT3 in the bovine intervertebral disc. Acta Biomaterialia, 2017, 52, 118-129.	8.3	33
33	CD146 defines commitment of cultured annulus fibrosus cells to express a contractile phenotype. Journal of Orthopaedic Research, 2016, 34, 1361-1372.	2.3	28
34	Development of an ex vivo cavity model to study repair strategies in loaded intervertebral discs. European Spine Journal, 2016, 25, 2898-2908.	2.2	25
35	Polyurethane scaffold with in situ swelling capacity for nucleus pulposus replacement. Biomaterials, 2016, 84, 196-209.	11.4	50
36	Endogenous Cell Homing for Intervertebral Disk Regeneration. Journal of the American Academy of Orthopaedic Surgeons, The, 2015, 23, 264-266.	2.5	7

#	Article	IF	CITATION
37	A combined biomaterial and cellular approach for annulus fibrosus rupture repair. Biomaterials, 2015, 42, 11-19.	11.4	91
38	Potential and Limitations of Intervertebral Disc Endogenous Repair. Current Stem Cell Research and Therapy, 2015, 10, 329-338.	1.3	30
39	Biomimetic fibrin–hyaluronan hydrogels for nucleus pulposus regeneration. Regenerative Medicine, 2014, 9, 309-326.	1.7	44
40	Diversity of intervertebral disc cells: phenotype and function. Journal of Anatomy, 2012, 221, 480-496.	1.5	237
41	The role of retinoic acid receptor inhibitor LE135 on the osteochondral differentiation of human bone marrow mesenchymal stem cells. Journal of Cellular Biochemistry, 2011, 112, 963-970.	2.6	4
42	Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF $\hat{\mathbf{e}}\hat{\mathbf{f}}^2$ pathway. Journal of Cellular and Molecular Medicine, 2010, 14, 1338-1346.	3.6	170
43	Improving Chondrogenesis: Potential and Limitations of (i>SOX9 (li>Gene Transfer and Mechanical Stimulation for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 1845-1855.	3.1	91
44	Chondrogenesis of Human Bone Marrow Mesenchymal Stem Cells in Fibrin–Polyurethane Composites Is Modulated by Frequency and Amplitude of Dynamic Compression and Shear Stress. Tissue Engineering - Part A, 2010, 16, 575-584.	3.1	129
45	Chondrogenesis of Human Bone Marrow Mesenchymal Stem Cells in Fibrin–Polyurethane Composites. Tissue Engineering - Part A, 2009, 15, 1729-1737.	3.1	86
46	Effect of reduced oxygen tension and long-term mechanical stimulation on chondrocyte-polymer constructs. Cell and Tissue Research, 2008, 331, 473-483.	2.9	70
47	Different response of articular chondrocyte subpopulations to surface motion. Osteoarthritis and Cartilage, 2007, 15, 1034-1041.	1.3	44
48	Quantifying multiple social relationships based on a multiplex stochastic block model. Frontiers of Information Technology and Electronic Engineering, 0, , 1.	2.6	1