Emiel Hensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7063150/publications.pdf

Version: 2024-02-01

		2544	7	7950
568	34,581	96		149
papers	citations	h-index		g-index
595	595	595		26469
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Ammonia electrocatalytic synthesis from nitrate. Electrochemical Science Advances, 2023, 3, .	2.8	10
2	A scanning pulse reaction technique for transient analysis of the methanol-to-hydrocarbons reaction. Catalysis Today, 2023, 417, 113740.	4.4	4
3	Alkali catalyzes methanethiol synthesis from CO and H2S. Journal of Catalysis, 2022, 405, 116-128.	6.2	8
4	Copper promotion of chromium-doped iron oxide water-gas shift catalysts under industrially relevant conditions. Journal of Catalysis, 2022, 405, 391-403.	6.2	7
5	Synthesis of Nanocrystalline Mordenite Zeolite with Improved Performance in Benzene Alkylation and nâ€Paraffins Hydroconversion. ChemCatChem, 2022, 14, .	3.7	6
6	Insights into Supported Subnanometer Catalysts Exposed to CO <i>via</i> Machine-Learning-Enabled Multiscale Modeling. Chemistry of Materials, 2022, 34, 1611-1619.	6.7	8
7	Effective Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Diformylfuran by an Acetal Protection Strategy. ChemSusChem, 2022, 15, .	6.8	7
8	Isotopic Exchange Study on the Kinetics of Fe Carburization and the Mechanism of the Fischer–Tropsch Reaction. ACS Catalysis, 2022, 12, 2877-2887.	11,2	10
9	Renewable Thiol–yne "Click―Networks Based on Propargylated Lignin for Adhesive Resin Applications. ACS Applied Polymer Materials, 2022, 4, 2544-2552.	4.4	12
10	A Catalytic Strategy for Selective Production of 5â€Formylfuranâ€2â€carboxylic Acid and Furanâ€2,5â€dicarboxylic Acid. ChemCatChem, 2022, 14, .	3.7	6
11	Lateral Interactions of Dynamic Adlayer Structures from Artificial Neural Networks. Journal of Physical Chemistry C, 2022, 126, 5529-5540.	3.1	5
12	Protection Strategies for the Conversion of Biobased Furanics to Chemical Building Blocks. ACS Sustainable Chemistry and Engineering, 2022, 10, 3116-3130.	6.7	13
13	Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO Oxidation on Pd/CeO ₂ Catalysts. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
14	Influence of polyvinylpyrrolidone as stabilizing agent on Pt nanoparticles in Pt/H-BEA catalyzed hydroconversion of n-hexadecane. Fuel, 2022, 317, 123506.	6.4	3
15	Influence of the size, order and topology of mesopores in bifunctional Pd-containing acidic SBA-15 and M41S catalysts for n-hexadecane hydrocracking. Fuel Processing Technology, 2022, 232, 107259.	7.2	6
16	Amorphous Silicaâ€Alumina as Suitable Catalyst for the Dielsâ€Alder Cycloaddition of <i>2,5</i> â€Dimethylfuran and Ethylene to Biobased <i>p</i> â€Xylene. ChemCatChem, 2022, 14, .	3.7	3
17	Facile synthesis of nanosized mordenite and beta zeolites with improved catalytic performance: non-surfactant diquaternary ammonium compounds as structure-directing agents. Inorganic Chemistry Frontiers, 2022, 9, 3200-3216.	6.0	11
18	Imaging the facet surface strain state of supported multi-faceted Pt nanoparticles during reaction. Nature Communications, 2022, 13 , .	12.8	11

#	Article	IF	CITATIONS
19	Titelbild: Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO Oxidation on Pd/CeO ₂ Catalysts (Angew. Chem. 23/2022). Angewandte Chemie, 2022, 134, .	2.0	0
20	Bifunctional Pt–Re Catalysts in Hydrodeoxygenation of Isoeugenol as a Model Compound for Renewable Jet Fuel Production. ACS Engineering Au, 2022, 2, 436-449.	5.1	7
21	Sintering and carbidization under simulated high conversion on a cobalt-based Fischer-Tropsch catalyst; manganese oxide as a structural promotor. Journal of Catalysis, 2022, 413, 106-118.	6.2	12
22	Different mechanisms of ethane aromatization over Mo/ZSM-5 and Ga/ZSM-5 catalysts. Catalysis Today, 2021, 369, 184-192.	4.4	43
23	Promoting oxygen evolution of IrO2 in acid electrolyte by Mn. Electrochimica Acta, 2021, 366, 137448.	5.2	21
24	A novel semi-batch autoclave reactor to overcome thermal dwell time in solvent liquefaction experiments. Chemical Engineering Journal, 2021, 417, 128074.	12.7	4
25	Shape selectivity in linear paraffins hydroconversion in 10-membered-ring pore zeolites. Journal of Catalysis, 2021, 394, 284-298.	6.2	17
26	On the Stability of Co ₃ O ₄ Oxygen Evolution Electrocatalysts in Acid. ChemCatChem, 2021, 13, 459-467.	3.7	32
27	Influence of hematite morphology on the CO oxidation performance of Au/ \hat{l} ±-Fe2O3. Chinese Journal of Catalysis, 2021, 42, 658-665.	14.0	13
28	Highly efficient CO ₂ electrolysis within a wide operation window using octahedral tin oxide single crystals. Journal of Materials Chemistry A, 2021, 9, 7848-7856.	10.3	42
29	Metal-support interfaces in ceria-based catalysts. , 2021, , .		0
30	Selective methanethiol-to-olefins conversion over HSSZ-13 zeolite. Chemical Communications, 2021, 57, 3323-3326.	4.1	8
31	Heterogeneous catalysts for the non-oxidative conversion of methane to aromatics and olefins. , 2021, , .		4
32	Furfural hydrodeoxygenation (HDO) over silica-supported metal phosphides â€" The influence of metalâ€"phosphorus stoichiometry on catalytic properties. Journal of Catalysis, 2021, 403, 181-193.	6.2	28
33	A Tensileâ€Strained Pt–Rh Singleâ€Atom Alloy Remarkably Boosts Ethanol Oxidation. Advanced Materials, 2021, 33, e2008508.	21.0	111
34	Facetâ€Dependent Strain Determination in Electrochemically Synthetized Platinum Model Catalytic Nanoparticles. Small, 2021, 17, e2007702.	10.0	4
35	Nature of Enhanced Brønsted Acidity Induced by Extraframework Aluminum in an Ultrastabilized Faujasite Zeolite: An <i>In Situ</i> NMR Study. Journal of Physical Chemistry C, 2021, 125, 9050-9059.	3.1	28
36	Reversible hydrogenation restores defected graphene to graphene. Science China Chemistry, 2021, 64, 1047-1056.	8.2	6

#	Article	IF	CITATIONS
37	Mechanistic study of catalytic CO ₂ hydrogenation in a plasma by operando DRIFT spectroscopy. Journal Physics D: Applied Physics, 2021, 54, 264004.	2.8	13
38	Flame Synthesis of Cu/ZnO–CeO ₂ Catalysts: Synergistic Metal–Support Interactions Promote CH ₃ OH Selectivity in CO ₂ Hydrogenation. ACS Catalysis, 2021, 11, 4880-4892.	11.2	73
39	Improved Pd/CeO ₂ Catalysts for Low-Temperature NO Reduction: Activation of CeO ₂ Lattice Oxygen by Fe Doping. ACS Catalysis, 2021, 11, 5614-5627.	11.2	44
40	A Multiâ€Parametric Catalyst Screening for CO ₂ Hydrogenation to Ethanol. ChemCatChem, 2021, 13, 3324-3332.	3.7	14
41	Studying Reaction Mechanisms in Solution Using a Distributed Electron Microscopy Method. ACS Nano, 2021, 15, 10296-10308.	14.6	13
42	The Impact of Biomass and Acid Loading on Methanolysis during Two-Step Lignin-First Processing of Birchwood. Catalysts, 2021, 11, 750.	3.5	11
43	Enumerating Active Sites on Metal Nanoparticles: Understanding the Size Dependence of Cobalt Particles for CO Dissociation. ACS Catalysis, 2021, 11, 8484-8492.	11.2	26
44	Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation. Nature Catalysis, 2021, 4, 469-478.	34.4	244
45	Investigation of the combustion and emissions of ligninâ€derived aromatic oxygenates in a marine diesel engine. Biofuels, Bioproducts and Biorefining, 2021, 15, 1709.	3.7	3
46	The role of H2 in Fe carburization by CO in Fischer-Tropsch catalysts. Journal of Catalysis, 2021, 400, 93-102.	6.2	17
47	Ni–In Synergy in CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2021, 11, 11371-11384.	11.2	79
48	Twin boundary migration in an individual platinum nanocrystal during catalytic CO oxidation. Nature Communications, 2021, 12, 5385.	12.8	14
49	Real-time dynamics and structures of supported subnanometer catalysts via multiscale simulations. Nature Communications, 2021, 12, 5430.	12.8	14
50	Lignin-Based Additives for Improved Thermo-Oxidative Stability of Biolubricants. ACS Sustainable Chemistry and Engineering, 2021, 9, 12548-12559.	6.7	41
51	The role of chromium in iron-based high-temperature water-gas shift catalysts under industrial conditions. Applied Catalysis B: Environmental, 2021, 297, 120465.	20.2	15
52	Stabilization effects in binary colloidal Cu and Ag nanoparticle electrodes under electrochemical CO ₂ reduction conditions. Nanoscale, 2021, 13, 4835-4844.	5.6	29
53	Subâ€Nanometer Confined lons and Solvent Molecules Intercalation Capacitance in Microslits of 2D Materials. Small, 2021, 17, e2104649.	10.0	9
54	Subâ€Nanometer Confined Ions and Solvent Molecules Intercalation Capacitance in Microslits of 2D Materials (Small 49/2021). Small, 2021, 17, .	10.0	1

#	Article	IF	CITATIONS
55	A quantum-chemical study of the CO dissociation mechanism on low-index Miller planes of Ï-Fe3C. Catalysis Today, 2020, 342, 152-160.	4.4	15
56	Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics. Catalysis Today, 2020, 342, 161-166.	4.4	46
57	First-principles based microkinetic modeling of transient kinetics of CO hydrogenation on cobalt catalysts. Catalysis Today, 2020, 342, 131-141.	4.4	29
58	Mn promotion of rutile TiO2-RuO2 anodes for water oxidation in acidic media. Applied Catalysis B: Environmental, 2020, 261, 118225.	20.2	53
59	Assessment of the Location of Pt Nanoparticles in Pt/zeolite YſĨ³â€Al ₂ O ₃ Composite Catalysts. ChemCatChem, 2020, 12, 615-622.	3.7	13
60	A theoretical study of the reverse waterâ€gas shift reaction on Ni(111) and Ni(311) surfaces. Canadian Journal of Chemical Engineering, 2020, 98, 740-748.	1.7	25
61	Hierarchically porous FER zeolite obtained via FAU transformation for fatty acid isomerization. Applied Catalysis B: Environmental, 2020, 263, 118356.	20.2	22
62	Investigation of the Active Phase in K-Promoted MoS ₂ Catalysts for Methanethiol Synthesis. ACS Catalysis, 2020, 10, 1838-1846.	11,2	25
63	Mechanistic role of protonated polar additives in ethanol for selective transformation of biomass-related compounds. Applied Catalysis B: Environmental, 2020, 264, 118509.	20.2	40
64	Molecular weight-based fractionation of lignin oils by membrane separation technology. Holzforschung, 2020, 74, 166-174.	1.9	5
65	Stability of heterogeneous single-atom catalysts: a scaling law mapping thermodynamics to kinetics. Npj Computational Materials, 2020, 6, .	8.7	44
66	Electrocatalytic synthesis of organic carbonates. Chemical Communications, 2020, 56, 13082-13092.	4.1	12
67	Mild thermolytic solvolysis of technical lignins in polar organic solvents to a crude lignin oil. Sustainable Energy and Fuels, 2020, 4, 6212-6226.	4.9	21
68	Finite-Temperature Structures of Supported Subnanometer Catalysts Inferred <i>via</i> Statistical Learning and Genetic Algorithm-Based Optimization. ACS Nano, 2020, 14, 13995-14007.	14.6	27
69	Electronic Structure and Interface Energetics of CuBi ₂ O ₄ Photoelectrodes. Journal of Physical Chemistry C, 2020, 124, 22416-22425.	3.1	39
70	Mechanistic aspects of n-paraffins hydrocracking: Influence of zeolite morphology and acidity of Pd(Pt)/ZSM-5 catalysts. Journal of Catalysis, 2020, 389, 544-555.	6.2	24
71	Stable Surface-Anchored Cu Nanocubes for CO ₂ Electroreduction to Ethylene. ACS Applied Nano Materials, 2020, 3, 8328-8334.	5.0	41
72	2D surface induced self-assembly of Pd nanocrystals into nanostrings for enhanced formic acid electrooxidation. Journal of Materials Chemistry A, 2020, 8, 17128-17135.	10.3	9

#	Article	IF	CITATIONS
73	The Vital Role of Step-Edge Sites for Both CO Activation and Chain Growth on Cobalt Fischer–Tropsch Catalysts Revealed through First-Principles-Based Microkinetic Modeling Including Lateral Interactions. ACS Catalysis, 2020, 10, 9376-9400.	11.2	37
74	Investigation of the stability of NiFe-(oxy)hydroxide anodes in alkaline water electrolysis under industrially relevant conditions. Catalysis Science and Technology, 2020, 10, 5593-5601.	4.1	35
75	Hierarchical 2D yarn-ball like metal–organic framework NiFe(dobpdc) as bifunctional electrocatalyst for efficient overall electrocatalytic water splitting. Journal of Materials Chemistry A, 2020, 8, 22974-22982.	10.3	43
76	Evidence of Octahedral Co–Mo–S Sites in Hydrodesulfurization Catalysts as Determined by Resonant Inelastic X-ray Scattering and X-ray Absorption Spectroscopy. ACS Catalysis, 2020, 10, 10978-10988.	11.2	19
77	Reply to: "Pitfalls in identifying active catalyst species― Nature Communications, 2020, 11, 4574.	12.8	0
78	Mechanism and Nature of Active Sites for Methanol Synthesis from CO/CO ₂ on Cu/CeO ₂ . ACS Catalysis, 2020, 10, 11532-11544.	11.2	92
79	Dynamics of gold clusters on ceria during CO oxidation. Journal of Catalysis, 2020, 392, 39-47.	6.2	20
80	Catalytic Conversion of Lignocellulosic Biomass: Application of Heterogeneous and Homogeneous Catalysts to Process Biomass into Value-Added Compounds. ACS Symposium Series, 2020, , 151-182.	0.5	2
81	Tuning the reactivity of molybdenum (oxy)carbide catalysts by the carburization degree: CO ₂ reduction and anisole hydrodeoxygenation. Catalysis Science and Technology, 2020, 10, 3635-3645.	4.1	27
82	Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts. Nature Catalysis, 2020, 3, 526-533.	34.4	286
83	Stability of Colloidal Iron Oxide Nanoparticles on Titania and Silica Support. Chemistry of Materials, 2020, 32, 5226-5235.	6.7	6
84	Impact of small promoter amounts on coke structure in dry reforming of methane over Ni/ZrO ₂ . Catalysis Science and Technology, 2020, 10, 3965-3974.	4.1	27
85	On the surface-dependent oxidation of Cu2O during CO oxidation: Cu2+ is more active than Cu+. Applied Catalysis A: General, 2020, 602, 117712.	4.3	29
86	Ligand-free ZnS nanoparticles: as easy and green as it gets. Chemical Communications, 2020, 56, 8707-8710.	4.1	7
87	Catalytic Hydrogenation of Renewable Levulinic Acid to \hat{l}^3 -Valerolactone: Insights into the Influence of Feed Impurities on Catalyst Performance in Batch and Flow Reactors. ACS Sustainable Chemistry and Engineering, 2020, 8, 5903-5919.	6.7	35
88	Hydrogenation of levulinic acid to \hat{I}^3 -valerolactone over Fe-Re/TiO2 catalysts. Applied Catalysis B: Environmental, 2020, 278, 119314.	20.2	57
89	Reactivity, Selectivity, and Stability of Zeoliteâ€Based Catalysts for Methane Dehydroaromatization. Advanced Materials, 2020, 32, e2002565.	21.0	86
90	<i>Inâ€Situ</i> Shellâ€Isolated Nanoparticleâ€Enhanced Raman Spectroscopy of Nickelâ€Catalyzed Hydrogenation Reactions. ChemPhysChem, 2020, 21, 625-632.	2.1	21

#	Article	IF	Citations
91	Efficient Conversion of Pine Wood Lignin to Phenol. ChemSusChem, 2020, 13, 1705-1709.	6.8	48
92	Electrochemical stability of $RuO2(110)/Ru(0001)$ model electrodes in the oxygen and chlorine evolution reactions. Electrochimica Acta, 2020, 336, 135713.	5.2	30
93	Ni-Mn catalysts on silica-modified alumina for CO2 methanation. Journal of Catalysis, 2020, 382, 358-371.	6.2	70
94	Selective hydrogenation of 5-hydroxymethylfurfural and its acetal with 1,3-propanediol to 2,5-bis(hydroxymethyl)furan using supported rhenium-promoted nickel catalysts in water. Green Chemistry, 2020, 22, 1229-1238.	9.0	50
95	Aromatization of ethylene over zeolite-based catalysts. Catalysis Science and Technology, 2020, 10, 2774-2785.	4.1	70
96	Increased activity in the oxygen evolution reaction by Fe ⁴⁺ -induced hole states in perovskite La _{1â^'x} Sr _x FeO ₃ . Journal of Materials Chemistry A, 2020, 8, 4407-4415.	10.3	78
97	Lattice oxygen activation in transition metal doped ceria. Chinese Journal of Catalysis, 2020, 41, 977-984.	14.0	31
98	Role of bismuth on aerobic benzyl alcohol oxidation over ceria polymorph-supported gold nanoparticles. Catalysis Communications, 2020, 140, 106004.	3.3	3
99	Gas-phase selective oxidation of cyclohexanol to cyclohexanone over Au/Mg1-xCuxCr2O4 catalysts: On the role of Cu doping. Journal of Catalysis, 2020, 384, 218-230.	6.2	10
100	A bifunctional catalyst based on Nb and V oxides over alumina: oxidative cleavage of crude glycerol to green formic acid. New Journal of Chemistry, 2020, 44, 8538-8544.	2.8	2
101	Dynamics of silver particles during ethylene epoxidation. Applied Catalysis B: Environmental, 2020, 272, 118983.	20.2	21
102	A theoretical study of CO oxidation and O2 activation for transition metal overlayers on SrTiO3 perovskite. Journal of Catalysis, 2020, 391, 229-240.	6.2	5
103	Cu Electrodeposition on Nanostructured MoS ₂ and WS ₂ and Implications for HER Active Site Determination. Journal of the Electrochemical Society, 2020, 167, 116517.	2.9	5
104	Synthesis of Stable and Low-CO ₂ Selective Phase-Pure $\hat{l}\mu$ -Iron Carbide Catalysts in Synthesis Gas Conversion. ACS Symposium Series, 2020, , 229-255.	0.5	1
105	Low-temperature, atmospheric pressure reverse water-gas shift reaction in dielectric barrier plasma discharge, with outlook to use in relevant industrial processes. Chemical Engineering Science, 2020, 225, 115803.	3.8	10
106	Co-Aromatization of Furan and Methanol over ZSM-5—A Pathway to Bio-Aromatics. ACS Catalysis, 2019, 9, 8547-8554.	11.2	29
107	Ceria–zirconia encapsulated Ni nanoparticles for CO ₂ methanation. Catalysis Science and Technology, 2019, 9, 5001-5010.	4.1	30
108	Ni ³⁺ -Induced Hole States Enhance the Oxygen Evolution Reaction Activity of Ni _{<i>x</i>} Co _{3â€"<i>x</i>} O ₄ Electrocatalysts. Chemistry of Materials, 2019, 31, 7618-7625.	6.7	76

#	Article	IF	Citations
109	Efficient Base-Metal NiMn/TiO ₂ Catalyst for CO ₂ Methanation. ACS Catalysis, 2019, 9, 7823-7839.	11.2	124
110	Efficient and Highly Transparent Ultraâ€Thin Nickelâ€Iron Oxyâ€hydroxide Catalyst for Oxygen Evolution Prepared by Successive Ionic Layer Adsorption and Reaction. ChemPhotoChem, 2019, 3, 1050-1054.	3.0	6
111	The Origin of High Activity of Amorphous MoS ₂ in the Hydrogen Evolution Reaction. ChemSusChem, 2019, 12, 4383-4389.	6.8	90
112	Catalytic Conversion of Lignin in Woody Biomass into Phenolic Monomers in Methanol/Water Mixtures without External Hydrogen. ACS Sustainable Chemistry and Engineering, 2019, 7, 13764-13773.	6.7	82
113	Mordenite Nanorods Prepared by an Inexpensive Pyrrolidineâ€based Mesoporogen for Alkane Hydroisomerization. ChemCatChem, 2019, 11, 2754-2754.	3.7	0
114	Industrial lignin from 2G biorefineries – Assessment of availability and pricing strategies. Bioresource Technology, 2019, 291, 121805.	9.6	23
115	Coverage Effects in CO Dissociation on Metallic Cobalt Nanoparticles. ACS Catalysis, 2019, 9, 7365-7372.	11.2	37
116	A Facile Direct Route to <i>N</i> â€(Un)substituted Lactams by Cycloamination of Oxocarboxylic Acids without External Hydrogen. ChemSusChem, 2019, 12, 3778-3784.	6.8	26
117	A Robust Au/ZnCr ₂ O ₄ Catalyst with Highly Dispersed Gold Nanoparticles for Gas-Phase Selective Oxidation of Cyclohexanol to Cyclohexanone. ACS Catalysis, 2019, 9, 11104-11115.	11.2	20
118	Hierarchically Porous (Alumino)Silicates Prepared by an Imidazole-Based Surfactant and Their Application in Acid-Catalyzed Reactions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40151-40162.	8.0	8
119	Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science, 2019, 366, 850-856.	12.6	1,005
120	The Origin of High Activity of Amorphous MoS 2 in the Hydrogen Evolution Reaction. ChemSusChem, 2019, 12, 4336-4336.	6.8	2
121	Influence of Reduced Cu Surface States on the Photoelectrochemical Properties of CuBi ₂ O ₄ . ACS Applied Energy Materials, 2019, 2, 6866-6874.	5.1	23
122	Structure Sensitivity of Silver-Catalyzed Ethylene Epoxidation. ACS Catalysis, 2019, 9, 9829-9839.	11.2	34
123	Template-Free Nanostructured Fluorine-Doped Tin Oxide Scaffolds for Photoelectrochemical Water Splitting. ACS Applied Materials & ACS	8.0	17
124	<i>In situ</i> structural evolution of single particle model catalysts under ambient pressure reaction conditions. Nanoscale, 2019, 11, 331-338.	5.6	10
125	A site-sensitive quasi-in situ strategy to characterize Mo/HZSM-5 during activation. Journal of Catalysis, 2019, 370, 321-331.	6.2	40
126	Bio-Based Chemicals: Selective Aerobic Oxidation of Tetrahydrofuran-2,5-dimethanol to Tetrahydrofuran-2,5-dicarboxylic Acid Using Hydrotalcite-Supported Gold Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 4647-4656.	6.7	19

#	Article	IF	Citations
127	Cellulose conversion to ethylene glycol by tungsten oxide-based catalysts. Molecular Catalysis, 2019, 473, 110400.	2.0	22
128	The Important Role of Rubidium Hydroxide in the Synthesis of Hierarchical ZSM-5 Zeolite Using Cetyltrimethylammonium as Structure-Directing Agent. European Journal of Inorganic Chemistry, 2019, 2019, 2493-2497.	2.0	3
129	Mild dealumination of template-stabilized zeolites by NH ₄ F. Catalysis Science and Technology, 2019, 9, 4239-4247.	4.1	16
130	Unraveling the Role of Lithium in Enhancing the Hydrogen Evolution Activity of MoS ₂ : Intercalation versus Adsorption. ACS Energy Letters, 2019, 4, 1733-1740.	17.4	45
131	Tunable colloidal Ni nanoparticles confined and redistributed in mesoporous silica for CO ₂ methanation. Catalysis Science and Technology, 2019, 9, 2578-2591.	4.1	31
132	Reversible Nature of Coke Formation on Mo/ZSMâ€5 Methane Dehydroaromatization Catalysts. Angewandte Chemie - International Edition, 2019, 58, 7068-7072.	13.8	65
133	Mesoporous Doped Tungsten Oxide for Glucose Dehydration to 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2019, 7, 7552-7562.	6.7	32
134	Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nature Communications, 2019, 10, 1358.	12.8	302
135	Investigating the role of the different metals in hydrotalcite Mg/Al-based adsorbents and their interaction with acidic sorbate species. Chemical Engineering Science, 2019, 200, 138-146.	3.8	12
136	Mordenite Nanorods Prepared by an Inexpensive Pyrrolidineâ€based Mesoporogen for Alkane Hydroisomerization. ChemCatChem, 2019, 11, 2803-2811.	3.7	14
137	Understanding the Impact of Defects on Catalytic CO Oxidation of LaFeO ₃ -Supported Rh, Pd, and Pt Single-Atom Catalysts. Journal of Physical Chemistry C, 2019, 123, 7290-7298.	3.1	36
138	Theoretical Approach To Predict the Stability of Supported Single-Atom Catalysts. ACS Catalysis, 2019, 9, 3289-3297.	11.2	101
139	Elucidating the electronic structure of CuWO ₄ thin films for enhanced photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 11895-11907.	10.3	67
140	Insight into the Rate-Determining Step and Active Sites in the Fischer–Tropsch Reaction over Cobalt Catalysts. ACS Catalysis, 2019, 9, 4189-4195.	11.2	36
141	Effective Strategy for High-Yield Furan Dicarboxylate Production for Biobased Polyester Applications. ACS Catalysis, 2019, 9, 4277-4285.	11.2	51
142	Reversible Nature of Coke Formation on Mo/ZSMâ€5 Methane Dehydroaromatization Catalysts. Angewandte Chemie, 2019, 131, 7142-7146.	2.0	4
143	N-formyl-stabilizing quasi-catalytic species afford rapid and selective solvent-free amination of biomass-derived feedstocks. Nature Communications, 2019, 10, 699.	12.8	69
144	Enhancing the electrocatalytic activity of 2H-WS ₂ for hydrogen evolution <i>via</i> defect engineering. Physical Chemistry Chemical Physics, 2019, 21, 6071-6079.	2.8	60

#	Article	IF	Citations
145	Insight into the Formation of Nanostructured MFI Sheets and MEL Needles Driven by Molecular Recognition. Journal of Physical Chemistry C, 2019, 123, 5326-5335.	3.1	10
146	Highly stable Pt ₃ Ni nanowires tailored with trace Au for the oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 26402-26409.	10.3	55
147	Understanding carbon dioxide activation and carbon–carbon coupling over nickel. Nature Communications, 2019, 10, 5330.	12.8	124
148	Linear Activation Energy-Reaction Energy Relations for LaBO3 (B = Mn, Fe, Co, Ni) Supported Single-Atom Platinum Group Metal Catalysts for CO Oxidation. Journal of Physical Chemistry C, 2019, 123, 31130-31141.	3.1	12
149	Towards a quantitative determination of strain in Bragg Coherent X-ray Diffraction Imaging: artefacts and sign convention in reconstructions. Scientific Reports, 2019, 9, 17357.	3.3	23
150	A versatile mono-quaternary ammonium salt as a mesoporogen for the synthesis of hierarchical zeolites. Catalysis Science and Technology, 2019, 9, 6737-6748.	4.1	4
151	Gallium-promoted HZSM-5 zeolites as efficient catalysts for the aromatization of biomass-derived furans. Chemical Engineering Science, 2019, 198, 305-316.	3.8	68
152	Kinetic model for adsorption and desorption of H2O and CO2 on hydrotalcite-based adsorbents. Chemical Engineering Journal, 2019, 355, 520-531.	12.7	36
153	Water-Dispersible Copper Sulfide Nanocrystals via Ligand Exchange of 1-Dodecanethiol. Chemistry of Materials, 2019, 31, 541-552.	6.7	37
154	Correlations between Density-Based Bond Orders and Orbital-Based Bond Energies for Chemical Bonding Analysis. Journal of Physical Chemistry C, 2019, 123, 2843-2854.	3.1	50
155	Interfacial charge transfer in Pt-loaded TiO2 P25 photocatalysts studied by in-situ diffuse reflectance FTIR spectroscopy of adsorbed CO. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 370, 84-88.	3.9	19
156	Mechanistic Insight into the [4 + 2] Diels–Alder Cycloaddition over First Row d-Block Cation-Exchanged Faujasites. ACS Catalysis, 2019, 9, 376-391.	11.2	23
157	The effect of oxidation and resulfidation on (Ni/Co)MoS2 hydrodesulfurisation catalysts. Applied Catalysis B: Environmental, 2019, 243, 145-150.	20.2	47
158	CO oxidation by Pd supported on CeO2(100) and CeO2(111) facets. Applied Catalysis B: Environmental, 2019, 243, 36-46.	20.2	231
159	A Linear Scaling Relation for CO Oxidation on CeO ₂ -Supported Pd. Journal of the American Chemical Society, 2018, 140, 4580-4587.	13.7	126
160	On the origin of the photocurrent of electrochemically passivated p-InP(100) photoelectrodes. Physical Chemistry Chemical Physics, 2018, 20, 14242-14250.	2.8	14
161	Coupling organosolv fractionation and reductive depolymerization of woody biomass in a two-step catalytic process. Green Chemistry, 2018, 20, 2308-2319.	9.0	74
162	CO2 and H2O chemisorption mechanism on different potassium-promoted sorbents for SEWGS processes. Journal of CO2 Utilization, 2018, 25, 180-193.	6.8	17

#	Article	IF	CITATIONS
163	Stability of CoP _{<i>x</i>} Electrocatalysts in Continuous and Interrupted Acidic Electrolysis of Water. ChemElectroChem, 2018, 5, 1230-1239.	3.4	35
164	Crystallographic orientation of facets and planar defects in functional nanostructures elucidated by nano-focused coherent diffractive X-ray imaging. Nanoscale, 2018, 10, 4833-4840.	5.6	14
165	Lewis Acid Catalysis by Zeolites * *These authors contributed equally, 2018,, 229-263.		3
166	Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSMâ€5. Angewandte Chemie, 2018, 130, 1028-1032.	2.0	18
167	Polypeptide Polymer Brushes by Lightâ€Induced Surface Polymerization of Amino Acid <i>N</i> à€€arboxyanhydrides. Macromolecular Rapid Communications, 2018, 39, e1700743.	3.9	13
168	Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and Mn: recent advances in an emerging field. Chemical Society Reviews, 2018, 47, 1459-1483.	38.1	511
169	Relevance of the Mo-precursor state in H-ZSM-5 for methane dehydroaromatization. Catalysis Science and Technology, 2018, 8, 916-922.	4.1	47
170	Innentitelbild: Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSMâ€5 (Angew.) Tj ETQq	0.00 rgBT	·/Qverlock 1
171	Marrying SPR excitation and metal–support interactions: unravelling the contribution of active surface species in plasmonic catalysis. Nanoscale, 2018, 10, 8560-8568.	5.6	14
172	Optimum Particle Size for Gold-Catalyzed CO Oxidation. Journal of Physical Chemistry C, 2018, 122, 8327-8340.	3.1	45
173	A dual-templating synthesis strategy to hierarchical ZSM-5 zeolites as efficient catalysts for the methanol-to-hydrocarbons reaction. Journal of Catalysis, 2018, 361, 135-142.	6.2	66
174	Quantum-Chemical DFT Study of Direct and H- and C-Assisted CO Dissociation on the χ-Fe ₅ C ₂ HÃgg Carbide. Journal of Physical Chemistry C, 2018, 122, 9929-9938.	3.1	34
175	Hydrogenation of Lactic Acid to 1,2â€Propanediol over Ruâ€Based Catalysts. ChemCatChem, 2018, 10, 810-817.	3.7	17
176	Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSMâ€5. Angewandte Chemie - International Edition, 2018, 57, 1016-1020.	13.8	128
177	Origin of enhanced Brønsted acidity of NiF-modified synthetic mica–montmorillonite clay. Catalysis Science and Technology, 2018, 8, 244-251.	4.1	8
178	Influence of Carbon Deposits on the Cobalt-Catalyzed Fischerâ€"Tropsch Reaction: Evidence of a Two-Site Reaction Model. ACS Catalysis, 2018, 8, 1580-1590.	11.2	61
179	Influence of material composition on the CO2 and H2O adsorption capacities and kinetics of potassium-promoted sorbents. Chemical Engineering Journal, 2018, 334, 2115-2123.	12.7	26
180	An Active Alkali-Exchanged Faujasite Catalyst for <i>p</i> -Xylene Production via the One-Pot Dielsâ€"Alder Cycloaddition/Dehydration Reaction of 2,5-Dimethylfuran with Ethylene. ACS Catalysis, 2018, 8, 760-769.	11.2	54

#	Article	IF	CITATIONS
181	Multiâ€site Cooperativity in Alkaliâ€Metalâ€Exchanged Faujasites for the Production of Biomassâ€Derived Aromatics. ChemPhysChem, 2018, 19, 446-458.	2.1	21
182	Hydrodeoxygenation of guaiacol over Ni2P/SiO2–reaction mechanism and catalyst deactivation. Applied Catalysis A: General, 2018, 550, 57-66.	4.3	74
183	Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol. Nano Energy, 2018, 43, 200-209.	16.0	133
184	Stable Pd-Doped Ceria Structures for CH ₄ Activation and CO Oxidation. ACS Catalysis, 2018, 8, 75-80.	11.2	111
185	Mechanism of Carbon Monoxide Dissociation on a Cobalt Fischer–Tropsch Catalyst. ChemCatChem, 2018, 10, 136-140.	3.7	39
186	Reversible Restructuring of Silver Particles during Ethylene Epoxidation. ACS Catalysis, 2018, 8, 11794-11800.	11.2	42
187	Tracking Local Mechanical Impact in Heterogeneous Polymers with Direct Optical Imaging. Angewandte Chemie - International Edition, 2018, 57, 16385-16390.	13.8	38
188	Selective Production of Biobased Phenol from Lignocellulose-Derived Alkylmethoxyphenols. ACS Catalysis, 2018, 8, 11184-11190.	11.2	82
189	Synthesis of stable and low-CO ₂ selective Îμ-iron carbide Fischer-Tropsch catalysts. Science Advances, 2018, 4, eaau2947.	10.3	126
190	Adsorption behavior and kinetics of H2S on a potassium-promoted hydrotalcite. International Journal of Hydrogen Energy, 2018, 43, 20758-20771.	7.1	9
191	Scaling-Up Catalytic Depolymerisation of Lignin: Performance Criteria for Industrial Operation. Topics in Catalysis, 2018, 61, 1901-1911.	2.8	10
192	Tracking Local Mechanical Impact in Heterogeneous Polymers with Direct Optical Imaging. Angewandte Chemie, 2018, 130, 16623-16628.	2.0	4
193	Highly active and stable spinel-oxide supported gold catalyst for gas-phase selective aerobic oxidation of cyclohexanol to cyclohexanone. Catalysis Communications, 2018, 117, 53-56.	3.3	15
194	Evaluating the Stability of Co ₂ P Electrocatalysts in the Hydrogen Evolution Reaction for Both Acidic and Alkaline Electrolytes. ACS Energy Letters, 2018, 3, 1360-1365.	17.4	291
195	Aerobic Oxidation of 5â€(Hydroxymethyl)furfural Cyclic Acetal Enables Selective Furanâ€2,5â€dicarboxylic Acid Formation with CeO ₂ â€Supported Gold Catalyst. Angewandte Chemie, 2018, 130, 8367-8371.	2.0	34
196	Direct epoxidation of propene on silylated Au–Ti catalysts: a study on silylation procedures and the effect on propane formation. Catalysis Science and Technology, 2018, 8, 3052-3059.	4.1	17
197	Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nature Chemistry, 2018, 10, 804-812.	13.6	221
198	A Density Functional Theory Study of the Mechanism of Direct Glucose Dehydration to 5â€Hydroxymethylfurfural on Anatase Titania. ChemCatChem, 2018, 10, 4084-4089.	3.7	27

#	Article	IF	CITATIONS
199	Deactivation of Sn-Beta during carbohydrate conversion. Applied Catalysis A: General, 2018, 564, 113-122.	4.3	31
200	Temperature-programmed plasma surface reaction: An approach to determine plasma-catalytic performance. Applied Catalysis B: Environmental, 2018, 239, 168-177.	20.2	57
201	An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites. Journal of CO2 Utilization, 2018, 24, 228-239.	6.8	183
202	Catalytic conversion of furanic compounds over Ga-modified ZSM-5 zeolites as a route to biomass-derived aromatics. Green Chemistry, 2018, 20, 3818-3827.	9.0	42
203	Aerobic Oxidation of 5â€(Hydroxymethyl)furfural Cyclic Acetal Enables Selective Furanâ€2,5â€dicarboxylic Acid Formation with CeO ₂ â€Supported Gold Catalyst. Angewandte Chemie - International Edition, 2018, 57, 8235-8239.	13.8	163
204	Transition metal doping of Pd(1 1 1) for the NO + CO reaction. Journal of Catalysis, 2018, 363, 154-163.	6.2	34
205	Isolated Fe Sites in Metal Organic Frameworks Catalyze the Direct Conversion of Methane to Methanol. ACS Catalysis, 2018, 8, 5542-5548.	11.2	200
206	Engineering of Transition Metal Catalysts Confined in Zeolites. Chemistry of Materials, 2018, 30, 3177-3198.	6.7	232
207	Silver addition to a cobalt Fischer–Tropsch catalyst. Journal of Catalysis, 2018, 366, 107-114.	6.2	11
208	Structure and Evolution of Confined Carbon Species during Methane Dehydroaromatization over Mo/ZSM-5. ACS Catalysis, 2018, 8, 8459-8467.	11.2	79
209	Early Transition Metal Doped Tungstite as an Effective Catalyst for Glucose Upgrading to 5-Hydroxymethylfurfural. Catalysis Letters, 2018, 148, 3093-3101.	2.6	16
210	Highly Active and Stable CH ₄ Oxidation by Substitution of Ce ⁴⁺ by Two Pd ²⁺ lons in CeO ₂ (111). ACS Catalysis, 2018, 8, 6552-6559.	11.2	90
211	Electronic Structure Analysis of the Diels–Alder Cycloaddition Catalyzed by Alkali-Exchanged Faujasites. Journal of Physical Chemistry C, 2018, 122, 14733-14743.	3.1	23
212	Supported Pt-Re catalysts for the selective hydrogenation of methyl and ethyl esters to alcohols. Catalysis Today, 2017, 279, 10-18.	4.4	33
213	Eight-coordinate fluoride in a silicate double-four-ring. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 828-833.	7.1	17
214	On the influence of steam on the CO2 chemisorption capacity of a hydrotalcite-based adsorbent for SEWGS applications. Chemical Engineering Journal, 2017, 314, 554-569.	12.7	56
215	Stable Mo/HZSM-5 methane dehydroaromatization catalysts optimized for high-temperature calcination-regeneration. Journal of Catalysis, 2017, 346, 125-133.	6.2	147
216	Looking at the Future of Chemical Production through the European Roadmap on Science and Technology of Catalysis the EU Effort for a Longâ€term Vision. ChemCatChem, 2017, 9, 904-909.	3.7	34

#	Article	IF	Citations
217	Temperature-Dependent Kinetic Studies of the Chlorine Evolution Reaction over RuO ₂ (110) Model Electrodes. ACS Catalysis, 2017, 7, 2403-2411.	11.2	111
218	Stable Fe/ZSM-5 Nanosheet Zeolite Catalysts for the Oxidation of Benzene to Phenol. ACS Catalysis, $2017, 7, 2709-2719$.	11.2	96
219	Optimization of Au0–Cu+ synergy in Au/MgCuCr2O4 catalysts for aerobic oxidation of ethanol to acetaldehyde. Journal of Catalysis, 2017, 347, 45-56.	6.2	27
220	Synergy in Lignin Upgrading by a Combination of Cu-Based Mixed Oxide and Ni-Phosphide Catalysts in Supercritical Ethanol. ACS Sustainable Chemistry and Engineering, 2017, 5, 3535-3543.	6.7	36
221	Selective production of mono-aromatics from lignocellulose over Pd/C catalyst: the influence of acid co-catalysts. Faraday Discussions, 2017, 202, 141-156.	3.2	69
222	Continuous Synthesis of \hat{I}^3 -Valerolactone in a Trickle-Bed Reactor over Supported Nickel Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 2680-2689.	3.7	34
223	Nonâ€Pincerâ€Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters. Angewandte Chemie - International Edition, 2017, 56, 7531-7534.	13.8	169
224	One-Step Synthesis of Hierarchical ZSM-5 Using Cetyltrimethylammonium as Mesoporogen and Structure-Directing Agent. Chemistry of Materials, 2017, 29, 4091-4096.	6.7	86
225	Epoxidation of propene using Au/TiO2: on the difference between H2 and CO as a co-reactant. Catalysis Science and Technology, 2017, 7, 2252-2261.	4.1	16
226	Catalysis for Fuels: general discussion. Faraday Discussions, 2017, 197, 165-205.	3.2	8
227	Synthesis, Physicochemical Characterization, and Cytotoxicity Assessment of CeO ₂ Nanoparticles with Different Morphologies. European Journal of Inorganic Chemistry, 2017, 2017, 3184-3190.	2.0	7
228	The effect of organic additives and phosphoric acid on sulfidation and activity of (Co)Mo/Al2O3 hydrodesulfurization catalysts. Journal of Catalysis, 2017, 351, 95-106.	6.2	70
229	Probing the Influence of SSZâ€13 Zeolite Pore Hierarchy in Methanolâ€toâ€Olefins Catalysis by Using Nanometer Accuracy by Stochastic Chemical Reactions Fluorescence Microscopy and Positron Emission Profiling. ChemCatChem, 2017, 9, 3470-3477.	3.7	19
230	MoO ₃ –TiO ₂ synergy in oxidative dehydrogenation of lactic acid to pyruvic acid. Green Chemistry, 2017, 19, 3014-3022.	9.0	50
231	Nonâ€Pincerâ€Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters. Angewandte Chemie, 2017, 129, 7639-7642.	2.0	40
232	Role of Dissociatively Adsorbed Water on the Formation of Shallow Trapped Electrons in TiO ₂ Photocatalysts. Journal of Physical Chemistry C, 2017, 121, 10153-10162.	3.1	24
233	Simultaneous NO _{<i>x</i>} and Particulate Matter Removal from Diesel Exhaust by Hierarchical Fe-Doped Ce–Zr Oxide. ACS Catalysis, 2017, 7, 3883-3892.	11.2	85
234	A real support effect on the hydrodeoxygenation of methyl oleate by sulfided NiMo catalysts. Catalysis Today, 2017, 298, 181-189.	4.4	39

#	Article	lF	CITATIONS
235	Reductive fractionation of woody biomass into lignin monomers and cellulose by tandem metal triflate and Pd/C catalysis. Green Chemistry, 2017, 19, 175-187.	9.0	154
236	Methane Dehydroaromatization by Mo/HZSM-5: Mono- or Bifunctional Catalysis?. ACS Catalysis, 2017, 7, 520-529.	11.2	155
237	CO oxidation on Rh-doped hexadecagold clusters. Catalysis Science and Technology, 2017, 7, 75-83.	4.1	15
238	Cesium's Offâ€theâ€Map Valence Orbital. Angewandte Chemie - International Edition, 2017, 56, 9772-9776.	13.8	17
239	On the Role of Acidity in Bulk and Nanosheet [T]MFI (T=Al ³⁺ _, Ga ³⁺ ,) Tj E7	ГQq1 1 0. [°] 3.7	784314 rg81 44
240	Preparative Aspects of Supported Ni2P Catalysts for Reductive Upgrading of Technical Lignin to Aromatics. Catalysis Letters, 2017, 147, 1722-1731.	2.6	9
241	Comment on "Efficient Conversion of Methane to Aromatics by Coupling Methylation Reaction― ACS Catalysis, 2017, 7, 4485-4487.	11.2	6
242	Innenrücktitelbild: Nonâ€Pincerâ€Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters (Angew. Chem. 26/2017). Angewandte Chemie, 2017, 129, 7787-7787.	2.0	0
243	On Layered Silicates and Zeolitic Nanosheets. Angewandte Chemie - International Edition, 2017, 56, 5160-5163.	13.8	6
244	Role of Adsorbed Water on Charge Carrier Dynamics in Photoexcited TiO ₂ . Journal of Physical Chemistry C, 2017, 121, 7514-7524.	3.1	82
245	Silica-supported Ni 2 P: Effect of preparation conditions on structure and catalytic performance in thiophene hydrodesulfurization (HDS). Catalysis Today, 2017, 292, 121-132.	4.4	30
246	Heterogeneous Catalysis. , 2017, , 15-71.		0
247	Reactor for nano-focused x-ray diffraction and imaging under catalytic in situ conditions. Review of Scientific Instruments, 2017, 88, 093902.	1.3	7
248	Chemisorption of H2O and CO2 on Hydrotalcites for Sorption-enhanced Water-gas-Shift Processes. Energy Procedia, 2017, 114, 2228-2242.	1.8	7
249	Scaling Relations for Acidity and Reactivity of Zeolites. Journal of Physical Chemistry C, 2017, 121, 23520-23530.	3.1	74
250	Catalytic Depolymerization of Lignin and Woody Biomass in Supercritical Ethanol: Influence of Reaction Temperature and Feedstock. ACS Sustainable Chemistry and Engineering, 2017, 5, 10864-10874.	6.7	84
251	Theoretical Study of Ripening Mechanisms of Pd Clusters on Ceria. Chemistry of Materials, 2017, 29, 9456-9462.	6.7	67
252	Mechanism of Cobalt-Catalyzed CO Hydrogenation: 1. Methanation. ACS Catalysis, 2017, 7, 8050-8060.	11.2	53

#	Article	IF	Citations
253	Mechanism of Cobalt-Catalyzed CO Hydrogenation: 2. Fischer–Tropsch Synthesis. ACS Catalysis, 2017, 7, 8061-8071.	11.2	94
254	Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts. Engineering, 2017, 3, 467-476.	6.7	87
255	Direct synthesis of hierarchical ZSM-5 zeolite using cetyltrimethylammonium as structure directing agent for methanol-to-hydrocarbons conversion. Catalysis Science and Technology, 2017, 7, 4520-4533.	4.1	34
256	Electronic Structure of the $[Cu < sub > 3 < / sub > (\hat{1}/4-O) < sub > 3 < / sub >] < sup > 2+ < / sup > Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation. Journal of Physical Chemistry C, 2017, 121, 22295-22302.$	3.1	74
257	Atomically Dispersed Pd–O Species on CeO ₂ (111) as Highly Active Sites for Low-Temperature CO Oxidation. ACS Catalysis, 2017, 7, 6887-6891.	11.2	208
258	Grand challenges for catalysis in the Science and Technology Roadmap on Catalysis for Europe: moving ahead for a sustainable future. Catalysis Science and Technology, 2017, 7, 5182-5194.	4.1	71
259	Graphene as Metalâ€Free Catalyst for Aqueous Phase Reforming of Ethylene Glycol. ChemistrySelect, 2017, 2, 6338-6343.	1.5	3
260	Supported nickel–rhenium catalysts for selective hydrogenation of methyl esters to alcohols. Chemical Communications, 2017, 53, 9761-9764.	4.1	42
261	Hydride Transfer versus Deprotonation Kinetics in the Isobutane–Propene Alkylation Reaction: A Computational Study. ACS Catalysis, 2017, 7, 8613-8627.	11.2	49
262	Influence of pore topology on synthesis and reactivity of Sn-modified zeolite catalysts for carbohydrate conversions. Catalysis Science and Technology, 2017, 7, 3151-3162.	4.1	40
263	Kinetic aspects of chain growth in Fischer–Tropsch synthesis. Faraday Discussions, 2017, 197, 153-164.	3.2	18
264	Effects of the Functionalization of the Ordered Mesoporous Carbon Support Surface on Iron Catalysts for the Fischer–Tropsch Synthesis of Lower Olefins. ChemCatChem, 2017, 9, 620-628.	3.7	50
265	FT-IR study of NO adsorption on MoS2/Al2O3 hydrodesulfurization catalysts: Effect of catalyst preparation. Catalysis Today, 2017, 292, 67-73.	4.4	12
266	A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide. Applied Catalysis B: Environmental, 2017, 201, 290-301.	20.2	110
267	High pressure flow reactor for in situ X-ray absorption spectroscopy of catalysts in gas-liquid mixtures—A case study on gas and liquid phase activation of a Co-Mo/Al 2 O 3 hydrodesulfurization catalyst. Catalysis Today, 2017, 292, 51-57.	4.4	12
268	The Influence and Removability of Colloidal Capping Agents on Carbon Monoxide Hydrogenation by Zirconiaâ€Supported Rhodium Nanoparticles. ChemCatChem, 2017, 9, 1018-1024.	3.7	7
269	Computational Chemistry of Zeolite Catalysis. , 2016, , 111-135.		3
270	Highâ€Efficiency InPâ€Based Photocathode for Hydrogen Production by Interface Energetics Design and Photon Management. Advanced Functional Materials, 2016, 26, 679-686.	14.9	69

#	Article	IF	Citations
271	Bent Carbon Surface Moieties as Active Sites on Carbon Catalysts for Phosgene Synthesis. Angewandte Chemie, 2016, 128, 1760-1764.	2.0	5
272	Bent Carbon Surface Moieties as Active Sites on Carbon Catalysts for Phosgene Synthesis. Angewandte Chemie - International Edition, 2016, 55, 1728-1732.	13.8	23
273	A DFT Study of CO ₂ Hydrogenation on Faujasiteâ€6upported lr ₄ Clusters: on the Role of Water for Selectivity Control. ChemCatChem, 2016, 8, 2500-2507.	3.7	17
274	Establishing hierarchy: the chain of events leading to the formation of silicalite-1 nanosheets. Chemical Science, 2016, 7, 6506-6513.	7.4	21
275	Effective Release of Lignin Fragments from Lignocellulose by Lewis Acid Metal Triflates in the Ligninâ€First Approach. ChemSusChem, 2016, 9, 3261-3261.	6.8	9
276	Strategies for the Direct Catalytic Valorization of Methane Using Heterogeneous Catalysis: Challenges and Opportunities. ACS Catalysis, 2016, 6, 2965-2981.	11.2	438
277	Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol. Journal of Catalysis, 2016, 338, 305-312.	6.2	217
278	Density Functional Theory Study of the Mechanism of Formaldehyde Oxidation on Mn-Doped Ceria. Journal of Physical Chemistry C, 2016, 120, 13071-13077.	3.1	48
279	A Periodic DFT Study of Glucose to Fructose Isomerization on Tungstite (WO ₃ A·H ₂ O): Influence of Group IV–VI Dopants and Cooperativity with Hydroxyl Groups. ACS Catalysis, 2016, 6, 4162-4169.	11.2	45
280	Bottlenecks limiting efficiency of photocatalytic water reduction by mixed Cd-Zn sulfides/Pt-TiO 2 composites. Applied Catalysis B: Environmental, 2016, 198, 16-24.	20.2	13
281	A quantum-chemical DFT study of CO dissociation on Fe-promoted stepped Rh surfaces. Catalysis Today, 2016, 275, 111-118.	4.4	12
282	Influence of sulfiding agent and pressure on structure and performance of CoMo/Al2O3 hydrodesulfurization catalysts. Journal of Catalysis, 2016, 342, 27-39.	6.2	73
283	Dehydration of Glucose to 5â€Hydroxymethylfurfural Using Nbâ€doped Tungstite. ChemSusChem, 2016, 9, 2421-2429.	6.8	64
284	Instability of NiMoS ₂ and CoMoS ₂ Hydrodesulfurization Catalysts at Ambient Conditions: A Quasi in Situ High-Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy Study. Journal of Physical Chemistry C, 2016, 120, 19204-19211.	3.1	17
285	Synchrotron based operando surface Xâ€ray scattering study towards structure–activity relationships of model electrocatalysts. ChemistrySelect, 2016, 1, 1104-1108.	1.5	7
286	Charge Transport over the Defective CeO ₂ (111) Surface. Chemistry of Materials, 2016, 28, 5652-5658.	6.7	52
287	ldentifying Sn Site Heterogeneities Prevalent Among Snâ€Beta Zeolites. Helvetica Chimica Acta, 2016, 99, 916-927.	1.6	44
288	Photocatalytic decarboxylation of lactic acid by Pt/TiO ₂ . Chemical Communications, 2016, 52, 11634-11637.	4.1	43

#	Article	IF	Citations
289	Oriented Pt Nanoparticles Supported on Few-Layers Graphene as Highly Active Catalyst for Aqueous-Phase Reforming of Ethylene Glycol. ACS Applied Materials & Interfaces, 2016, 8, 33690-33696.	8.0	17
290	Enhanced Photoresponse of FeS ₂ Films: The Role of Marcasite–Pyrite Phase Junctions. Advanced Materials, 2016, 28, 9602-9607.	21.0	64
291	ZrO $<$ sub $>$ 2 $<$ /sub $>$ 1s Preferred over TiO $<$ sub $>$ 2 $<$ /sub $>$ as Support for the Ru-Catalyzed Hydrogenation of Levulinic Acid to \hat{I}^3 -Valerolactone. ACS Catalysis, 2016, 6, 5462-5472.	11.2	169
292	Photoelectrochemistry: Enhanced Photoresponse of FeS2 Films: The Role of Marcasite-Pyrite Phase Junctions (Adv. Mater. 43/2016). Advanced Materials, 2016, 28, 9656-9656.	21.0	0
293	Relationship between acidity and catalytic reactivity of faujasite zeolite: A periodic DFT study. Journal of Catalysis, 2016, 344, 570-577.	6.2	72
294	Silylation enhances the performance of Au/Ti–SiO2 catalysts in direct epoxidation of propene using H2 and O2. Journal of Catalysis, 2016, 344, 434-444.	6.2	46
295	Selective Coke Combustion by Oxygen Pulsing During Mo/ZSMâ€5â€Catalyzed Methane Dehydroaromatization. Angewandte Chemie - International Edition, 2016, 55, 15086-15090.	13.8	94
296	Competitive Adsorption of Substrate and Solvent in Snâ€Beta Zeolite During Sugar Isomerization. ChemSusChem, 2016, 9, 3145-3149.	6.8	36
297	Effective Release of Lignin Fragments from Lignocellulose by Lewis Acid Metal Triflates in the Ligninâ€First Approach. ChemSusChem, 2016, 9, 3262-3267.	6.8	103
298	Selective Coke Combustion by Oxygen Pulsing During Mo/ZSMâ€5â€Catalyzed Methane Dehydroaromatization. Angewandte Chemie, 2016, 128, 15310-15314.	2.0	18
299	Transition metal (Ti, Mo, Nb, W) nitride catalysts for lignin depolymerisation. Chemical Communications, 2016, 52, 9375-9378.	4.1	36
300	Identification of step-edge sites on Rh nanoparticles for facile CO dissociation. Catalysis Communications, 2016, 77, 5-8.	3.3	18
301	Fluoride-assisted synthesis of bimodal microporous SSZ-13 zeolite. Chemical Communications, 2016, 52, 3227-3230.	4.1	36
302	Lewis acid-catalyzed depolymerization of soda lignin in supercritical ethanol/water mixtures. Catalysis Today, 2016, 269, 9-20.	4.4	51
303	Trimodal Porous Hierarchical SSZ-13 Zeolite with Improved Catalytic Performance in the Methanol-to-Olefins Reaction. ACS Catalysis, 2016, 6, 2163-2177.	11.2	116
304	The nature of strong BrÃ,nsted acidity of Ni-SMM clay. Applied Catalysis B: Environmental, 2016, 191, 62-75.	20.2	14
305	Chemisorption working capacity and kinetics of CO 2 and H 2 O of hydrotalcite-based adsorbents for sorption-enhanced water-gas-shift applications. Chemical Engineering Journal, 2016, 293, 9-23.	12.7	54
306	Effect of USY Zeolite Chemical Treatment with Ammonium Nitrate on Its VGO Hydrocracking Performance. Energy & Samp; Fuels, 2016, 30, 616-625.	5.1	13

#	Article	IF	CITATIONS
307	Zeolite Catalysis for Biomass Conversion. Green Chemistry and Sustainable Technology, 2016, , 347-372.	0.7	2
308	On the activity of supported Au catalysts in the liquid phase hydrogenation of CO2 to formates. Journal of Catalysis, 2016, 343, 97-105.	6.2	126
309	A mechanistic DFT study of low temperature SCR of NO with NH ₃ on MnCe _{1â^'x} O ₂ (111). Catalysis Science and Technology, 2016, 6, 2120-2128.	4.1	55
310	Computational Chemistry of Catalytic Biomass Conversion. Green Chemistry and Sustainable Technology, 2016, , 63-104.	0.7	0
311	Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 2016, 499, 65-79.	8.2	435
312	One-pot synthesis of nano-crystalline MCM-22. Microporous and Mesoporous Materials, 2016, 220, 28-38.	4.4	36
313	Lewis-acid catalyzed depolymerization of Protobind lignin in supercritical water and ethanol. Catalysis Today, 2016, 259, 460-466.	4.4	87
314	Research Trends in Fischer-Tropsch Catalysis for Coal to Liquids Technology. Frontiers of Engineering Management, 2016, 3, 321.	6.1	6
315	A Quasi In Situ HRTEM Study of the Air Stability of (Ni/Co)MoS2 Hydrodesulfurization Catalysts. Microscopy and Microanalysis, 2015, 21, 801-802.	0.4	0
316	Bis-N-heterocyclic Carbene Aminopincer Ligands Enable High Activity in Ru-Catalyzed Ester Hydrogenation. Journal of the American Chemical Society, 2015, 137, 7620-7623.	13.7	90
317	Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs. Journal of Molecular Catalysis A, 2015, 406, 58-64.	4.8	154
318	Gold Clusters and Nanoparticles Stabilized by Nanoshaped Ceria in Catalysis., 2015,, 99-132.		4
319	A DFT Study of CO Oxidation at the Pd–CeO ₂ (110) Interface. Journal of Physical Chemistry C, 2015, 119, 27505-27511.	3.1	57
320	Role of Cu–Mg–Al Mixed Oxide Catalysts in Lignin Depolymerization in Supercritical Ethanol. ACS Catalysis, 2015, 5, 7359-7370.	11.2	165
321	Nature and Catalytic Role of Extraframework Aluminum in Faujasite Zeolite: A Theoretical Perspective. ACS Catalysis, 2015, 5, 7024-7033.	11.2	92
322	Nitrogen-doping of bulk and nanotubular TiO2 photocatalysts by plasma-assisted atomic layer deposition. Applied Surface Science, 2015, 330, 476-486.	6.1	24
323	Influence of steam-calcination and acid leaching treatment on the VGO hydrocracking performance of faujasite zeolite. Fuel Processing Technology, 2015, 133, 89-96.	7.2	52
324	Catalytic Hydrogenation of CO ₂ to Formates by a Lutidine-Derived Ru–CNC Pincer Complex: Theoretical Insight into the Unrealized Potential. ACS Catalysis, 2015, 5, 1145-1154.	11.2	109

#	Article	IF	Citations
325	Selective Propylene Oxidation to Acrolein by Gold Dispersed on MgCuCr ₂ O ₄ Spinel. ACS Catalysis, 2015, 5, 1100-1111.	11.2	40
326	Influence of Pt particle size and Re addition by catalytic reduction on aqueous phase reforming of glycerol for carbon-supported Pt(Re) catalysts. Applied Catalysis B: Environmental, 2015, 174-175, 126-135.	20.2	40
327	Microkinetic Modeling of the Oxygen Reduction Reaction at the Pt(111)/Gas Interface. Catalysis Letters, 2015, 145, 451-457.	2.6	12
328	Synthesis of Snâ∈Beta with Exclusive and High Framework Sn Content. ChemCatChem, 2015, 7, 1152-1160.	3.7	105
329	Activation of Mo/HZSM-5 for methane aromatization. Chinese Journal of Catalysis, 2015, 36, 829-837.	14.0	38
330	Cu2O photoelectrodes for solar water splitting: Tuning photoelectrochemical performance by controlled faceting. Solar Energy Materials and Solar Cells, 2015, 141, 178-186.	6.2	72
331	First-Principles-Based Microkinetics Simulations of Synthesis Gas Conversion on a Stepped Rhodium Surface. ACS Catalysis, 2015, 5, 5453-5467.	11.2	124
332	Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nature Communications, 2015, 6, 7546.	12.8	623
333	Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics. Green Chemistry, 2015, 17, 4941-4950.	9.0	245
334	On the deactivation of Mo/HZSM-5 in the methane dehydroaromatization reaction. Applied Catalysis B: Environmental, 2015, 176-177, 731-739.	20.2	174
335	On the synthesis of highly acidic nanolayered ZSM-5. Journal of Catalysis, 2015, 327, 10-21.	6.2	56
336	Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. Chemical Society Reviews, 2015, 44, 3808-3833.	38.1	395
337	Surface-Dependence of Defect Chemistry of Nanostructured Ceria. Journal of Physical Chemistry C, 2015, 119, 12423-12433.	3.1	64
338	Influence of the Si/Al ratio on the separation properties of SSZ-13 zeolite membranes. Journal of Membrane Science, 2015, 484, 140-145.	8.2	98
339	On the metal–support synergy for selective gas-phase ethanol oxidation over MgCuCr 2 O 4 supported metal nanoparticle catalysts. Journal of Catalysis, 2015, 331, 138-146.	6.2	39
340	Texture, acidity and fluid catalytic cracking performance of hierarchical faujasite zeolite prepared by an amphiphilic organosilane. Fuel Processing Technology, 2015, 139, 248-258.	7.2	36
341	Ex Situ and Operando Studies on the Role of Copper in Cu-Promoted SiO ₂ –MgO Catalysts for the Lebedev Ethanol-to-Butadiene Process. ACS Catalysis, 2015, 5, 6005-6015.	11.2	95
342	Decomposition of lignin model compounds by Lewis acid catalysts in water and ethanol. Journal of Molecular Catalysis A, 2015, 410, 89-99.	4.8	24

#	Article	IF	CITATIONS
343	On the Formation of Cd–Zn Sulfide Photocatalysts from Insoluble Hydroxide Precursors. Inorganic Chemistry, 2015, 54, 9491-9498.	4.0	14
344	Structureâ€"Activity Correlations in Hydrodesulfurization Reactions over Ni-Promoted Mo _{<i>x</i>} W _(1â€"<i>x</i>) S ₂ /Al ₂ O ₃ Catalysts. ACS Catalysis, 2015, 5, 7276-7287.	11,2	101
345	Carbon-Induced Surface Transformations of Cobalt. ACS Catalysis, 2015, 5, 596-601.	11.2	44
346	Desilication and silylation of Mo/HZSM-5 for methane dehydroaromatization. Microporous and Mesoporous Materials, 2015, 203, 259-273.	4.4	66
347	Structure of palladium nanoparticles under oxidative conditions. Physical Chemistry Chemical Physics, 2015, 17, 2268-2273.	2.8	13
348	Acid catalytic properties of reduced tungsten and niobium-tungsten oxides. Applied Catalysis B: Environmental, 2015, 163, 370-381.	20.2	34
349	Theory of surface chemistry and reactivity of reducible oxides. Catalysis Today, 2015, 244, 63-84.	4.4	67
350	High flux high-silica SSZ-13 membrane for CO ₂ separation. Journal of Materials Chemistry A, 2014, 2, 13083-13092.	10.3	142
351	Size dependence of photocatalytic oxidation reactions of Rh nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) support. Chinese Journal of Catalysis, 2014, 35, 1944-1954.	14.0	4
352	Hydrodeoxygenation of mono- and dimeric lignin model compounds on noble metal catalysts. Catalysis Today, 2014, 233, 83-91.	4.4	170
353	Improving separation performance of high-silica zeolite membranes by surface modification with triethoxyfluorosilane. Microporous and Mesoporous Materials, 2014, 194, 24-30.	4.4	31
354	Stability and catalytic properties of porous acidic (organo)silica materials for conversion of carbohydrates. Journal of Molecular Catalysis A, 2014, 388-389, 81-89.	4.8	31
355	Pt-Re synergy in aqueous-phase reforming of glycerol and the water–gas shift reaction. Journal of Catalysis, 2014, 311, 88-101.	6.2	103
356	Promotional effect of transition metal doping on the basicity and activity of calcined hydrotalcite catalysts for glycerol carbonate synthesis. Applied Catalysis B: Environmental, 2014, 144, 135-143.	20.2	146
357	Molecular Promoting of Aluminum Metal–Organic Framework Topology MIL-101 by <i>N</i> , <i>N</i> , 882-887.	4.0	49
358	Unraveling the synergy between gold nanoparticles and chromium-hydrotalcites in aerobic oxidation of alcohols. Journal of Catalysis, 2014, 313, 80-91.	6.2	57
359	A Mechanistic Study of Niâ€catalyzed Carbon Dioxide Coupling with Ethylene towards the Manufacture of Acrylic Acid. ChemCatChem, 2014, 6, 800-807.	3.7	23
360	Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNPâ€Pincer Catalyst. ChemCatChem, 2014, 6, 1526-1530.	3.7	283

#	Article	IF	CITATIONS
361	DFT Simulations of Water Adsorption and Activation on Lowâ€Index αâ€Ga ₂ O ₃ Surfaces. Chemistry - A European Journal, 2014, 20, 6915-6926.	3.3	32
362	Comparison of mesoporous SSZ-13 and SAPO-34 zeolite catalysts for the methanol-to-olefins reaction. Catalysis Today, 2014, 235, 160-168.	4.4	63
363	Defect Chemistry of Ceria Nanorods. Journal of Physical Chemistry C, 2014, 118, 4131-4142.	3.1	110
364	Tuning the hydrogenation activity of Pd NPs on Al–MIL-53 by linker modification. Catalysis Science and Technology, 2014, 4, 795.	4.1	27
365	Acidic properties of nanolayered ZSM-5 zeolites. Microporous and Mesoporous Materials, 2014, 189, 144-157.	4.4	39
366	On the effect of EDTA treatment on the acidic properties of USY zeolite and its performance in vacuum gas oil hydrocracking. Applied Catalysis A: General, 2014, 488, 219-230.	4.3	26
367	Glucose Dehydration to 5-Hydroxymethylfurfural by a Combination of a Basic Zirconosilicate and a Solid Acid. Catalysis Letters, 2014, 144, 2121-2128.	2.6	17
368	Synthesis of hierarchical zeolites using an inexpensive mono-quaternary ammonium surfactant as mesoporogen. Chemical Communications, 2014, 50, 14658-14661.	4.1	48
369	Structure sensitivity in the ruthenium nanoparticle catalyzed aqueous-phase Fischer–Tropsch reaction. Catalysis Science and Technology, 2014, 4, 3510-3523.	4.1	26
370	Aqueous phase reforming of glycerol over Re-promoted Pt and Rh catalysts. Green Chemistry, 2014, 16, 853-863.	9.0	70
371	Correlating Fischer–Tropsch activity to Ru nanoparticle surface structure as probed by high-energy X-ray diffraction. Chemical Communications, 2014, 50, 6005-6008.	4.1	40
372	Effect of the Nature and Location of Copper Species on the Catalytic Nitric Oxide Selective Catalytic Reduction Performance of the Copper/SSZâ€₹3 Zeolite. ChemCatChem, 2014, 6, 634-639.	3.7	30
373	A mechanism of gas-phase alcohol oxidation at the interface of Au nanoparticles and a MgCuCr ₂ O ₄ spinel support. Catalysis Science and Technology, 2014, 4, 2997-3003.	4.1	23
374	The Optimally Performing Fischer–Tropsch Catalyst. Angewandte Chemie - International Edition, 2014, 53, 12746-12750.	13.8	208
375	The Optimally Performing Fischer–Tropsch Catalyst. Angewandte Chemie, 2014, 126, 12960-12964.	2.0	35
376	Influence of support morphology on the detemplation and permeation of ZSM-5 and SSZ-13 zeolite membranes. Microporous and Mesoporous Materials, 2014, 197, 268-277.	4.4	41
377	Catalytic Depolymerization of Lignin in Supercritical Ethanol. ChemSusChem, 2014, 7, 2276-2288.	6.8	313
378	Lutidine-Derived Ru-CNC Hydrogenation Pincer Catalysts with Versatile Coordination Properties. ACS Catalysis, 2014, 4, 2667-2671.	11.2	104

#	Article	IF	Citations
379	Synergy between Lewis acid sites and hydroxyl groups for the isomerization of glucose to fructose over Sn-containing zeolites: a theoretical perspective. Catalysis Science and Technology, 2014, 4, 2241-2250.	4.1	117
380	Photoelectrochemical Properties of CuCrO2: Characterization of Light Absorption and Photocatalytic H2 Production Performance. Catalysis Letters, 2014, 144, 1487-1493.	2.6	32
381	Site Stability on Cobalt Nanoparticles: A Molecular Dynamics ReaxFF Reactive Force Field Study. Journal of Physical Chemistry C, 2014, 118, 6882-6886.	3.1	36
382	Mechanism of CO ₂ hydrogenation to formates by homogeneous Ru-PNP pincer catalyst: from a theoretical description to performance optimization. Catalysis Science and Technology, 2014, 4, 3474-3485.	4.1	112
383	Quantum chemistry of the Fischer–Tropsch reaction catalysed by a stepped ruthenium surface. Catalysis Science and Technology, 2014, 4, 3129-3140.	4.1	51
384	Hydrogenation of \hat{I}^3 -valerolactone in ethanol over Pd nanoparticles supported on sulfonic acid functionalized MIL-101. RSC Advances, 2014, 4, 39558.	3.6	41
385	Influence of Rh nanoparticle size and composition on the photocatalytic water splitting performance of Rh/graphitic carbon nitride. International Journal of Hydrogen Energy, 2014, 39, 11537-11546.	7.1	67
386	Platinum–Rhenium Synergy on Reducible Oxide Supports in Aqueousâ€Phase Glycerol Reforming. ChemCatChem, 2014, 6, 1260-1269.	3.7	22
387	Mechanistic Aspects of the Water–Gas Shift Reaction on Isolated and Clustered Au Atoms on CeO ₂ (110): A Density Functional Theory Study. ACS Catalysis, 2014, 4, 1885-1892.	11.2	120
388	Development of a heterogeneous catalyst for lignocellulosic biomass conversion: Glucose dehydration by metal chlorides in a silicaâ€supported ionic liquid layer. Environmental Progress and Sustainable Energy, 2014, 33, 657-662.	2.3	23
389	Reactivity of CO on Carbon-Covered Cobalt Surfaces in Fischer–Tropsch Synthesis. Journal of Physical Chemistry C, 2014, 118, 5317-5327.	3.1	42
390	Synthesis and separation properties of an \hat{l} ±-alumina-supported high-silica MEL membrane. Journal of Membrane Science, 2013, 447, 12-18.	8.2	24
391	Palladium nanoparticles entrapped in polymeric ionic liquid microgels as recyclable hydrogenation catalysts. Journal of Molecular Catalysis A, 2013, 379, 53-58.	4.8	34
392	A computational DFT study of CO oxidation on a Au nanorod supported on CeO2(110): on the role of the support termination. Catalysis Science and Technology, 2013, 3, 3020.	4.1	60
393	Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite. Journal of Catalysis, 2013, 307, 194-203.	6.2	149
394	How metallic is gold in the direct epoxidation of propene: an FTIR study. Catalysis Science and Technology, 2013, 3, 3042.	4.1	28
395	Highly Efficient and Robust Au/MgCuCr ₂ O ₄ Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde. Journal of the American Chemical Society, 2013, 135, 14032-14035.	13.7	456
396	Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over MgAl mixed oxide catalysts. Applied Catalysis A: General, 2013, 467, 124-131.	4.3	97

#	Article	IF	CITATIONS
397	Multiple Zeolite Structures from One Ionic Liquid Template. Chemistry - A European Journal, 2013, 19, 2122-2130.	3.3	34
398	Hydrothermal synthesis and characterization of a layered zirconium silicate. Microporous and Mesoporous Materials, 2013, 180, 48-55.	4.4	18
399	On the structure and hydrotreating performance of carbon-supported CoMo- and NiMo-sulfides. Applied Catalysis B: Environmental, 2013, 142-143, 178-186.	20.2	49
400	The impact of Metal–Ligand Cooperation in Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium PNP Pincer. ACS Catalysis, 2013, 3, 2522-2526.	11.2	136
401	Selective oxidation of ethanol to acetaldehyde by Auâ^Ir catalysts. Journal of Catalysis, 2013, 305, 135-145.	6.2	55
402	Adsorption of Argon on MFI Nanosheets: Experiments and Simulations. Journal of Physical Chemistry C, 2013, 117, 24503-24510.	3.1	10
403	Catalytic properties of extraframework iron-containing species in ZSM-5 for N2O decomposition. Journal of Catalysis, 2013, 308, 386-397.	6.2	43
404	Nanostructured ceria supported Pt and Au catalysts for the reactions of ethanol and formic acid. Applied Catalysis B: Environmental, 2013, 130-131, 325-335.	20.2	54
405	Dehydration of Different Ketoses and Aldoses to 5â€Hydroxymethylfurfural. ChemSusChem, 2013, 6, 1681-1687.	6.8	90
406	Exposed Surfaces on Shapeâ€Controlled Ceria Nanoparticles Revealed through ACâ€TEM and Water–Gas Shift Reactivity. ChemSusChem, 2013, 6, 1898-1906.	6.8	134
407	Mechanism and microkinetics of the Fischer–Tropsch reaction. Physical Chemistry Chemical Physics, 2013, 15, 17038.	2.8	233
408	Effect of Organic Capping Agents on Rutheniumâ€Nanoparticleâ€Catalyzed Aqueousâ€Phase Fischer–Tropsch Synthesis. ChemCatChem, 2013, 5, 3148-3155.	3.7	19
409	Roughening of Pt nanoparticles induced by surface-oxide formation. Physical Chemistry Chemical Physics, 2013, 15, 2268.	2.8	21
410	A computational study of the mechanism of CO oxidation by a ceria supported surface rhodium oxide layer. Chemical Communications, 2013, 49, 3851.	4.1	15
411	Microkinetics of steam methane reforming on platinum and rhodium metal surfaces. Journal of Catalysis, 2013, 297, 227-235.	6.2	43
412	Influence of Extraframework Aluminum on the BrÃ, nsted Acidity and Catalytic Reactivity of Faujasite Zeolite. ChemCatChem, 2013, 5, 452-466.	3.7	98
413	Mesoporous SSZ-13 zeolite prepared by a dual-template method with improved performance in the methanol-to-olefins reaction. Journal of Catalysis, 2013, 298, 27-40.	6.2	144
414	Catalytic performance of sheet-like Fe/ZSM-5 zeolites for the selective oxidation of benzene with nitrous oxide. Journal of Catalysis, 2013, 299, 81-89.	6.2	87

#	Article	IF	CITATIONS
415	Porous MOFs supported palladium catalysts for phenol hydrogenation: A comparative study on MIL-101 and MIL-53. Catalysis Communications, 2013, 41, 47-51.	3.3	67
416	Structure, Stability, and Lewis Acidity of Mono and Double Ti, Zr, and Sn Framework Substitutions in BEA Zeolites: A Periodic Density Functional Theory Study. Journal of Physical Chemistry C, 2013, 117, 3976-3986.	3.1	98
417	Enhancement of Catalyst Performance in the Direct Propene Epoxidation: A Study into Gold–Titanium Synergy. ChemCatChem, 2013, 5, 467-478.	3.7	66
418	A computational study of the influence of the ceria surface termination on the mechanism of CO oxidation of isolated Rh atoms. Faraday Discussions, 2013, 162, 281.	3.2	37
419	The Molecular Pathway to ZIFâ€7 Microrods Revealed by In Situ Timeâ€Resolved Small―and Wideâ€Angle Xâ€Ra Scattering, Quickâ€6canning Extended Xâ€Ray Absorption Spectroscopy, and DFT Calculations. Chemistry - A European Journal, 2013, 19, 7809-7816.	ау 3.3	47
420	Highly Active and Recyclable Snâ€MWW Zeolite Catalyst for Sugar Conversion to Methyl Lactate and Lactic Acid. ChemSusChem, 2013, 6, 1352-1356.	6.8	140
421	Reconstruction of Clean and Oxygen-Covered Pt(110) Surfaces. Journal of Physical Chemistry C, 2013, 117, 11251-11257.	3.1	24
422	Preparation and photoelectrochemical properties of nitrogen doped nanotubular TiO2 arrays. Applied Surface Science, 2013, 282, 174-180.	6.1	20
423	Monomer Formation Model versus Chain Growth Model of the Fischer–Tropsch Reaction. Journal of Physical Chemistry C, 2013, 117, 4488-4504.	3.1	55
424	Chemical Vapor Deposition of Trimethylaluminum on Dealuminated Faujasite Zeolite. ACS Catalysis, 2013, 3, 1504-1517.	11.2	22
425	The Mechanism of Glucose Isomerization to Fructose over Snâ€BEA Zeolite: A Periodic Density Functional Theory Study. ChemSusChem, 2013, 6, 1688-1696.	6.8	122
426	Structure Sensitivity in CO Oxidation by a Single Au Atom Supported on Ceria. Journal of Physical Chemistry C, 2013, 117, 7721-7726.	3.1	45
427	Stability of Extraframework Iron-Containing Complexes in ZSM-5 Zeolite. Journal of Physical Chemistry C, 2013, 117, 413-426.	3.1	75
428	Mechanism of BrÃ,nsted acid-catalyzed conversion of carbohydrates. Journal of Catalysis, 2012, 295, 122-132.	6.2	221
429	Acidity Characterization of Amorphous Silica–Alumina. Journal of Physical Chemistry C, 2012, 116, 21416-21429.	3.1	129
430	Dual template synthesis of a highly mesoporous SSZ-13 zeolite with improved stability in the methanol-to-olefins reaction. Chemical Communications, 2012, 48, 9492.	4.1	112
431	Formation of a Rhodium Surface Oxide Film in Rh _{<i>n</i>} /CeO ₂ (111) Relevant for Catalytic CO Oxidation: A Computational Study. Journal of Physical Chemistry C, 2012, 116, 22904-22915.	3.1	27
432	Support effects in the aqueous phase reforming of glycerol over supported platinum catalysts. Applied Catalysis A: General, 2012, 431-432, 113-119.	4.3	71

#	Article	IF	CITATIONS
433	CO–PROX reactions on copper cerium oxide catalysts prepared by melt infiltration. Applied Catalysis B: Environmental, 2012, 123-124, 424-432.	20.2	43
434	"Extracting―the Key Fragment in ETSâ€10 Crystallization and Its Application in AMâ€6 Assembly. Chemistry - A European Journal, 2012, 18, 12078-12084.	3.3	8
435	Efficient Tandem Synthesis of Methyl Esters and Imines by Using Versatile Hydrotalciteâ€Supported Gold Nanoparticles. Chemistry - A European Journal, 2012, 18, 12122-12129.	3.3	93
436	The origin of isotope-induced helical-sense bias in supramolecular polymers of benzene-1,3,5-tricarboxamides. Physical Chemistry Chemical Physics, 2012, 14, 13997.	2.8	3
437	Self-organization of extraframework cations in zeolites. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2070-2086.	2.1	7 3
438	Structure and Basicity of Microporous Titanosilicate ETS-10 and Vanadium-Containing ETS-10. Journal of Physical Chemistry C, 2012, 116, 17124-17133.	3.1	9
439	Structure and Reactivity of Zn-Modified ZSM-5 Zeolites: The Importance of Clustered Cationic Zn Complexes. ACS Catalysis, 2012, 2, 71-83.	11.2	214
440	Kinetics of the Fischer–Tropsch Reaction. Angewandte Chemie - International Edition, 2012, 51, 9015-9019.	13.8	55
441	On the Mechanism of Lewis Acid Catalyzed Glucose Transformations in Ionic Liquids. ChemCatChem, 2012, 4, 1263-1271.	3.7	66
442	Structure sensitivity in the hydrogenation of unsaturated hydrocarbons over Rh nanoparticles. Catalysis Today, 2012, 183, 72-78.	4.4	37
443	The nature of the sulfur tolerance of amorphous silica-alumina supported NiMo(W) sulfide and Pt hydrogenation catalysts. Applied Catalysis A: General, 2012, 411-412, 51-59.	4.3	22
444	Oxygen reduction reaction (ORR) activity and durability of carbon supported PtM (Co, Ni, Cu) alloys: Influence of particle size and non-noble metals. Applied Catalysis B: Environmental, 2012, 111-112, 515-526.	20.2	170
445	Hierarchical fabrication of silica cocoon with hexagonally ordered channel constructed wall via an emulsion-assisted process. Microporous and Mesoporous Materials, 2012, 150, 90-95.	4.4	9
446	BrÃ,nsted acidity of Al/SBA-15. Microporous and Mesoporous Materials, 2012, 151, 34-43.	4.4	69
447	New Cuâ€Based Catalysts Supported on TiO ₂ Films for Ullmann S _N Ar‶ype CO Coupling Reactions. Chemistry - A European Journal, 2012, 18, 1800-1810.	3.3	14
448	Site regeneration in the Fischer–Tropsch synthesis reaction: a synchronized CO dissociation and C–C coupling pathway. Chemical Communications, 2011, 47, 9822.	4.1	42
449	Dry gel conversion of organosilane templated mesoporous silica: from amorphous to crystalline catalysts for benzene oxidation. Journal of Materials Chemistry, 2011, 21, 9279.	6.7	23
450	Size and Topological Effects of Rhodium Surfaces, Clusters and Nanoparticles on the Dissociation of CO. Journal of Physical Chemistry C, 2011, 115, 14204-14212.	3.1	48

#	Article	IF	CITATIONS
451	Methane Dissociation on High and Low Indices Rh Surfaces. Journal of Physical Chemistry C, 2011, 115, 13027-13034.	3.1	35
452	Nature and Location of Cationic Lanthanum Species in High Alumina Containing Faujasite Type Zeolites. Journal of Physical Chemistry C, 2011, 115, 21763-21776.	3.1	105
453	Unfolding and Mechanochemical Scission of Supramolecular Polymers Containing a Metal–Ligand Coordination Bond. Macromolecules, 2011, 44, 9187-9195.	4.8	49
454	Complexity behind CO ₂ Capture on NH ₂ -MIL-53(Al). Langmuir, 2011, 27, 3970-3976.	3.5	274
455	Aerobic oxidation of alcohols over hydrotalcite-supported gold nanoparticles: the promotional effect of transition metal cations. Chemical Communications, 2011, 47, 11540.	4.1	90
456	The relative stability of zeolite precursor tetraalkylammonium–silicate oligomer complexes. Microporous and Mesoporous Materials, 2011, 146, 82-87.	4.4	23
457	Hierarchically structured Fe/ZSM-5 as catalysts for the oxidation of benzene to phenol. Microporous and Mesoporous Materials, $2011, 145, 172-181$.	4.4	74
458	Influence of particle size on the activity and stability in steam methane reforming of supported Rh nanoparticles. Journal of Catalysis, 2011, 280, 206-220.	6.2	166
459	Au/TiO2@SBA-15 nanocomposites as catalysts for direct propylene epoxidation with O2 and H2 mixtures. Journal of Catalysis, 2011, 282, 94-102.	6.2	46
460	Stability and reactivity of active sites for direct benzene oxidation to phenol in Fe/ZSM-5: A comprehensive periodic DFT study. Journal of Catalysis, 2011, 284, 194-206.	6.2	69
461	The role of promoters for Ni catalysts in low temperature (membrane) steam methane reforming. Applied Catalysis A: General, 2011, 405, 108-119.	4.3	49
462	Towards a Selective Heterogeneous Catalyst for Glucose Dehydration to 5â€Hydroxymethylfurfural in Water: CrCl ₂ Catalysis in a Thin Immobilized Ionic Liquid Layer. ChemCatChem, 2011, 3, 969-972.	3.7	58
463	Unprecedented Oxygenate Selectivity in Aqueousâ€Phase Fischer–Tropsch Synthesis by Ruthenium Nanoparticles. ChemCatChem, 2011, 3, 1735-1738.	3.7	48
464	Facile synthesis of the DD3R zeolite: performance in the adsorptive separation of buta-1,3-diene and but-2-ene isomers. Journal of Materials Chemistry, 2011, 21, 18386.	6.7	57
465	Sulfated Zirconia Modified SBA-15 Catalysts for Cellobiose Hydrolysis. Catalysis Letters, 2011, 141, 33-42.	2.6	54
466	Gold Stabilized by Nanostructured Ceria Supports: Nature of the Active Sites and Catalytic Performance. Topics in Catalysis, 2011, 54, 424-438.	2.8	73
467	DFT Study on mechanochemical bond breaking in COGEF and Molecular Dynamics simulations. Procedia Computer Science, 2011, 4, 1167-1176.	2.0	5
468	Phosphotungstic Acid Encapsulated in Metal–Organic Framework as Catalysts for Carbohydrate Dehydration to 5â€Hydroxymethylfurfural. ChemSusChem, 2011, 4, 59-64.	6.8	216

#	Article	IF	Citations
469	Supported Rhodium Oxide Nanoparticles as Highly Active CO Oxidation Catalysts. Angewandte Chemie - International Edition, 2011, 50, 5306-5310.	13.8	93
470	Molecular Aspects of Glucose Dehydration by Chromium Chlorides in Ionic Liquids. Chemistry - A European Journal, 2011, 17, 5281-5288.	3.3	109
471	Understanding the Anomalous Alkane Selectivity of ZIFâ€7 in the Separation of Light Alkane/Alkene Mixtures. Chemistry - A European Journal, 2011, 17, 8832-8840.	3.3	274
472	Inside Cover: Molecular Aspects of Glucose Dehydration by Chromium Chlorides in Ionic Liquids (Chem. Eur. J. 19/2011). Chemistry - A European Journal, 2011, 17, 5210-5210.	3.3	5
473	Retro-analysis of silicate aggregation in pentasil zeolite formation. Catalysis Today, 2011, 169, 156-166.	4.4	14
474	Hierarchical zeolites prepared by organosilane templating: A study of the synthesis mechanism and catalytic activity. Catalysis Today, 2011, 168, 96-111.	4.4	60
475	Influence of chloride ions on the stability of PtNi alloys for PEMFC cathode. Electrochimica Acta, 2011, 56, 7235-7242.	5.2	24
476	In situ X-ray absorption spectroscopy of germanium evaporated thin film electrodes. Electrochimica Acta, 2010, 55, 7074-7079.	5.2	44
477	Template-Free Synthesis of Sphere, Rod and Prism Morphologies of CeO2 Oxidation Catalysts. Catalysis Letters, 2010, 137, 28-34.	2.6	34
478	Formation of acid sites in amorphous silica-alumina. Journal of Catalysis, 2010, 269, 201-218.	6.2	151
479	Ionicâ€Liquidâ€Stabilized Rhodium Nanoparticles for Citral Cyclodehydration. ChemSusChem, 2010, 3, 1264-1267.	6.8	10
480	Detection of Carbocationic Species in Zeolites: Large Crystals Pave the Way. Chemistry - A European Journal, 2010, 16, 9340-9348.	3.3	26
481	Glucose Activation by Transient Cr ²⁺ Dimers. Angewandte Chemie - International Edition, 2010, 49, 2530-2534.	13.8	150
482	Effect of pressure on the sulfidation behavior of NiW catalysts: A 182W Mössbauer spectroscopy study. Catalysis Today, 2010, 150, 224-230.	4.4	4
483	BrÃ,nsted acid sites of zeolitic strength in amorphous silica-alumina. Chemical Communications, 2010, 46, 3466.	4.1	65
484	The CO Formation Reaction Pathway in Steam Methane Reforming by Rhodium. Langmuir, 2010, 26, 16339-16348.	3.5	29
485	Coordination Properties of Ionic Liquid-Mediated Chromium(II) and Copper(II) Chlorides and Their Complexes with Glucose. Inorganic Chemistry, 2010, 49, 10081-10091.	4.0	61
486	Quantification of Strong BrÃ,nsted Acid Sites in Aluminosilicates. Journal of Physical Chemistry C, 2010, 114, 8363-8374.	3.1	64

#	Article	IF	Citations
487	Enhanced Catalytic Oxidation by Hierarchically Structured TS-1 Zeolite. Journal of Physical Chemistry C, 2010, 114, 6553-6559.	3.1	133
488	DFT study on H2O activation by stepped and planar Rh surfaces. Surface Science, 2009, 603, 3275-3281.	1.9	31
489	Ethanol dehydrogenation by gold catalysts: The effect of the gold particle size and the presence of oxygen. Applied Catalysis A: General, 2009, 361, 49-56.	4.3	174
490	The influence of metal loading and activation on mesoporous materials supported nickel phosphide hydrotreating catalysts. Applied Catalysis A: General, 2009, 365, 48-54.	4.3	39
491	Direct Hydrothermal Synthesis of Iron-Containing Mesoporous Silica SBA-15: Potential as a Support for Gold Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 21831-21839.	3.1	18
492	A hierarchical Fe/ZSM-5 zeolite with superior catalytic performance for benzene hydroxylation to phenol. Chemical Communications, 2009, , 7590.	4.1	106
493	Basic metal carbonate supported gold nanoparticles: enhanced performance in aerobic alcohol oxidation. Green Chemistry, 2009, 11 , 322 .	9.0	52
494	Cyanide leaching of Au/CeO2: highly active gold clusters for 1,3-butadiene hydrogenation. Physical Chemistry Chemical Physics, 2009, 11, 9578-82.	2.8	36
495	Multinuclear gallium-oxide cations in high-silica zeolites. Physical Chemistry Chemical Physics, 2009, 11, 2893.	2.8	50
496	High-pressure sulfidation of a calcined CoMo/Al2O3 hydrodesulfurization catalyst. Catalysis Today, 2008, 130, 126-134.	4.4	32
497	A DFT study on benzene adsorption over a corner site of tungsten sulfides. Catalysis Today, 2008, 130, 178-182.	4.4	13
498	Cracking of n-heptane over BrÃ, nsted acid sites and Lewis acid Ga sites in ZSM-5 zeolite. Microporous and Mesoporous Materials, 2008, 110, 279-291.	4.4	89
499	SBA-15-supported nickel phosphide hydrotreating catalysts. Journal of Catalysis, 2008, 253, 119-131.	6.2	148
500	Surface functionalization of SBA-15-ordered mesoporous silicas: Oxidation of benzene to phenol by nitrous oxide. Journal of Catalysis, 2008, 255, 190-196.	6.2	46
501	Non-localized charge compensation in zeolites: A periodic DFT study of cationic gallium-oxide clusters in mordenite. Journal of Catalysis, 2008, 255, 139-143.	6.2	34
502	Anionic Oligomerization of Ethylene over Ga/ZSM-5 Zeolite: A Theoretical Study. Journal of Physical Chemistry C, 2008, 112, 19604-19611.	3.1	26
503	Iron-functionalized Al-SBA-15 for benzene hydroxylation. Chemical Communications, 2008, , 774-776.	4.1	29
504	Cluster Model DFT Study of CO Adsorption to Gallium Ions in Ga/HZSM-5. Journal of Physical Chemistry C, 2008, 112, 3321-3326.	3.1	17

#	Article	IF	Citations
505	Direct and NO-assisted N2O decomposition over Cu-zeolites. Studies in Surface Science and Catalysis, 2007, 170, 1080-1087.	1.5	4
506	Modification of BrÃ,nsted acidity of zeolites by Ga+, GaO+ and AlO+: comparison for alkane activation. Studies in Surface Science and Catalysis, 2007, 170, 1182-1189.	1.5	7
507	Positron Emission Profiling: aÂStudy of Hydrocarbon Diffusivity in MFI Zeolites. Molecular Sieves - Science and Technology, 2007, , 277-328.	0.2	4
508	Promotion of Thiophene Hydrodesulfurization by Ammonia over Amorphous-Silicaâ [^] Alumina-Supported CoMo and NiMo Sulfides. Industrial & Engineering Chemistry Research, 2007, 46, 4202-4211.	3.7	10
509	Dehydrogenation of Light Alkanes over Isolated Gallyl Ions in Ga/ZSM-5 Zeolites. Journal of Physical Chemistry C, 2007, 111, 13068-13075.	3.1	87
510	A Combined Experimental and Computational Study of Alkane Activation over Ga+, GaO+, GaH2+ and H+ lons in ZSM-5. Studies in Surface Science and Catalysis, 2007, , 417-420.	1.5	1
511	Polyamide Synthesis from 6-Aminocapronitrile, Part 2: Heterogeneously Catalyzed Nitrile Hydrolysis with Consecutive Amine Amidation. Chemistry - A European Journal, 2007, 13, 7673-7681.	3.3	14
512	Waterâ€Promoted Hydrocarbon Activation Catalyzed by Binuclear Gallium Sites in ZSMâ€5 Zeolite. Angewandte Chemie - International Edition, 2007, 46, 7273-7276.	13.8	78
513	Insight into the formation of the active phases in supported NiW hydrotreating catalysts. Applied Catalysis A: General, 2007, 322, 16-32.	4.3	85
514	Direct NO and N2O decomposition and NO-assisted N2O decomposition over Cu-zeolites: Elucidating the influence of the CuCu distance on oxygen migration. Journal of Catalysis, 2007, 245, 358-368.	6.2	120
515	A DFT study on benzene adsorption over tungsten sulfides: surface model and adsorption geometries. Topics in Catalysis, 2007, 45, 175-179.	2.8	9
516	Controlling Reaction Pathways for Alcohol Dehydration and Dehydrogenation over FeSBA-15 Catalysts. Catalysis Letters, 2007, 117, 18-24.	2.6	28
517	Effect of Aluminum on the Nature of the Iron Species in Fe-SBA-15. Journal of Physical Chemistry B, 2006, 110, 26114-26121.	2.6	69
518	Modification of inorganic supports with nickel acetylacetonate: The effect of their surface properties. Kinetics and Catalysis, 2006, 47, 451-459.	1.0	3
519	Hysteresis in Clay Swelling Induced by Hydrogen Bonding:  Accurate Prediction of Swelling States. Langmuir, 2006, 22, 1223-1234.	3 . 5	154
520	Influence of preparation procedure on the surface chemistry and catalytic characteristics of FeZSM-5 zeolite in selective oxidation of benzene to phenol. Russian Journal of Applied Chemistry, 2006, 79, 1115-1121.	0.5	4
521	A DFT Study of Hydrogen–deuterium Exchange over Oxidized and Reduced Gallium Species in Ga/HZSM-5 Zeolite. Catalysis Letters, 2006, 108, 187-191.	2.6	12
522	Chemistry of N2O decomposition on active sites with different nature: Effect of high-temperature treatment of Fe/ZSM-5. Journal of Catalysis, 2006, 238, 186-195.	6.2	125

#	Article	IF	Citations
523	Characterization and reactivity of Ga+ and GaO+ cations in zeolite ZSM-5. Journal of Catalysis, 2006, 239, 478-485.	6.2	145
524	A comprehensive density functional theory study of ethane dehydrogenation over reduced extra-framework gallium species in ZSM-5 zeolite. Journal of Catalysis, 2006, 240, 73-84.	6.2	99
525	Positron Emission Profiling — The Ammonia Oxidation Reaction as a Case Study. Catalytic Science Series, 2006, , 213-260.	0.0	0
526	Concentration and temperature dependence of the diffusivity of n-hexane in MFI-zeolites. Microporous and Mesoporous Materials, 2005, 77, 119-129.	4.4	13
527	Reactivity of generated oxygen species from nitrous oxide over [Fe,Al]MFI catalysts for the direct oxidation of benzene to phenol. Catalysis Today, 2005, 110, 221-227.	4.4	24
528	A periodic density functional theory study of gallium-exchanged mordenite. Comptes Rendus Chimie, 2005, 8, 509-520.	0.5	12
529	DRIFTS study of the nature and chemical reactivity of gallium ions in Ga/ZSM-5II. Oxidation of reduced Ga species in ZSM-5 by nitrous oxide or water. Journal of Catalysis, 2005, 233, 351-358.	6.2	66
530	Spin design of iron complexes on Fe-ZSM-5 zeolites. Catalysis Today, 2005, 110, 247-254.	4.4	22
531	In situ Ga K edge XANES study of the activation of Ga/ZSM-5 prepared by chemical vapor deposition of trimethylgallium. Catalysis Letters, 2005, 101, 79-85.	2.6	73
532	On two alternative mechanisms of ethane activation over ZSM-5 zeolite modified by Zn2+ and Ga1+ cations. Physical Chemistry Chemical Physics, 2005, 7, 3088.	2.8	98
533	Intrinsic kinetics of thiophene hydrodesulfurization on a sulfided NiMo/SiO2 planar model catalyst. Journal of Catalysis, 2004, 221, 541-548.	6.2	40
534	Effect of high-temperature treatment on Fe/ZSM-5 prepared by chemical vapor deposition of FeCl3I. Physicochemical characterization. Journal of Catalysis, 2004, 221, 560-574.	6.2	192
535	Effect of high-temperature treatment on Fe/ZSM-5 prepared by chemical vapor deposition of FeCl3II. Nitrous oxide decomposition, selective oxidation of benzene to phenol, and selective reduction of nitric oxide by isobutane. Journal of Catalysis, 2004, 221, 575-583.	6.2	112
536	On the role of aluminum in the selective oxidation of benzene to phenol by nitrous oxide over iron-containing MFI zeolites: an in situ Fe XANES study. Journal of Catalysis, 2004, 226, 466-470.	6.2	61
537	Characterization and thiophene hydrodesulfurization activity of amorphous-silica–alumina-supported NiW catalysts. Journal of Catalysis, 2004, 228, 433-446.	6.2	34
538	Physicochemical and catalytic characterization of non-hydrothermally synthesized Mg-, Ni- and Mg–Ni-saponite-like materials. Microporous and Mesoporous Materials, 2004, 69, 49-63.	4.4	21
539	Selective hydrogen oxidation in a mixture with ethane/ethene using cerium zirconium oxide. Applied Catalysis A: General, 2004, 262, 201-206.	4.3	20
540	Molecular Simulations of Swelling Clay Minerals. Journal of Physical Chemistry B, 2004, 108, 7586-7596.	2.6	168

#	Article	IF	Citations
541	Low-Temperature Ammonia Oxidation Over Pt/\hat{I}^3 -Alumina: The Influence of the Alumina Support. Topics in Catalysis, 2003, 23, 109-117.	2.8	45
542	Nonhydrothermal Synthesis and Properties of Saponite-Like Materials. Russian Journal of Applied Chemistry, 2003, 76, 700-705.	0.5	7
543	Intrinsic Thiophene Hydrodesulfurization Kinetics of a Sulfided NiMo/SiO2Model Catalyst: Volcano-Type Behavior. Catalysis Letters, 2003, 90, 117-122.	2.6	17
544	Title is missing!. Catalysis Letters, 2003, 86, 25-31.	2.6	68
545	Extraframework Feî—'Alî—'O species occluded in MFI zeolite as the active species in the oxidation of benzene to phenol with nitrous oxide. Journal of Catalysis, 2003, 220, 260-264.	6.2	122
546	On the sulfur tolerance of supported Ni(Co)Mo sulfide hydrotreating catalysts. Journal of Catalysis, 2003, 215, 353-357.	6.2	35
547	Activation of ammonia dissociation by oxygen on platinum sponge studied with positron emission profiling. Journal of Catalysis, 2003, 219, 156-166.	6.2	31
548	Encapsulation of transition metal sulfides in faujasite zeolite for hydroprocessing applications. Catalysis Today, 2003, 86, 87-109.	4.4	40
549	H2â^'D2 exchange and migration of Ga in H-ZSM5 and H-MOR zeolites. Studies in Surface Science and Catalysis, 2002, 142, 959-966.	1.5	1
550	Preparation, characterization and catalytic activity of non-hydrothermally synthesized saponite-like materials. Studies in Surface Science and Catalysis, 2002, 142, 271-278.	1.5	11
551	Why Clays Swell. Journal of Physical Chemistry B, 2002, 106, 12664-12667.	2.6	350
552	Quasi in Situ Sequential Sulfidation of CoMo/Al2O3Studied Using High-Resolution Electron Microscopy. Journal of Physical Chemistry B, 2002, 106, 11795-11799.	2.6	31
553	N2O decomposition over Fe/ZSM-5: reversible generation of highly active cationic Fe species. Chemical Communications, 2002, , 1232-1233.	4.1	17
554	Cobalt–molybdenum-sulfide particles inside NaY zeolite?. Applied Catalysis A: General, 2002, 236, 205-222.	4.3	5
555	Layered double hydroxides as catalysts for aromatic nitrile hydrolysis. Microporous and Mesoporous Materials, 2002, 56, 241-255.	4.4	25
556	N2O Decomposition over Fe/ZSM-5: Effect of High-Temperature Calcination and Steaming. Catalysis Letters, 2002, 81, 205-212.	2.6	90
557	A Refinement on the Notion of Type I and II (Co)MoS Phases in Hydrotreating Catalysts. Catalysis Letters, 2002, 84, 59-67.	2.6	104
558	Selective hydrogen oxidation in a mixture with ethane/ethene using Ce0.6Zr0.4O2 mixed oxides. Chemie-Ingenieur-Technik, 2001, 73, 766-766.	0.8	0

#	Article	IF	CITATIONS
559	The Effect of Support Interaction on the Sulfidability of Al2O3- and TiO2-Supported CoW and NiW Hydrodesulfurization Catalysts. Journal of Catalysis, 2001, 198, 151-163.	6.2	105
560	The Relation between Morphology and Hydrotreating Activity for Supported MoS2 Particles. Journal of Catalysis, 2001, 199, 224-235.	6.2	360
561	The observation of nanometer-sized entities in sulphided Mo-based catalysts on various supports. Catalysis Letters, 2001, 74, 49-53.	2.6	28
562	Adsorption isotherms of water in Liâ \in ", Naâ \in ", and Kâ \in "montmorillonite by molecular simulation. Journal of Chemical Physics, 2001, 115, 3322-3329.	3.0	102
563	Periodic Trends in Hydrotreating Catalysis: Thiophene Hydrodesulfurization over Carbon-Supported 4d Transition Metal Sulfides. Journal of Catalysis, 2000, 192, 98-107.	6.2	85
564	The application of non-hydrothermally prepared stevensites as support for hydrodesulfurization catalysts. Studies in Surface Science and Catalysis, 2000, , 257-265.	1.5	4
565	Hydrogen–Deuterium Equilibration over Transition Metal Sulfide Catalysts: On the Synergetic Effect in CoMo Catalysts. Journal of Catalysis, 1999, 187, 95-108.	6.2	50
566	Chemistry and Reactivity of Transition Metal Sulphides in Relation to Their Catalytic Performance. , $1998, 169-188.$		1
567	Kinetics and Mechanism of Thiophene Hydrodesulfurization over Carbon-Supported Transition Metal Sulfides. Journal of Catalysis, 1996, 163, 429-435.	6.2	63
568	Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO Oxidation on Pd/CeO ₂ Catalysts. Angewandte Chemie, 0, , .	2.0	0