
Ekaterina Shelest

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7061934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Annotation survey and life-cycle transcriptomics of transcription factors in rust fungi (Pucciniales) identify a possible role for cold shock proteins in dormancy exit. Fungal Genetics and Biology, 2022, , 103698.	2.1	0
2	Positive Selection in Gene Regulatory Factors Suggests Adaptive Pleiotropic Changes During Human Evolution. Frontiers in Genetics, 2021, 12, 662239.	2.3	8
3	The first draft genome of feather grasses using SMRT sequencing and its implications in molecular studies of Stipa. Scientific Reports, 2021, 11, 15345.	3.3	6
4	Shed Light in the DaRk LineagES of the Fungal Tree of Life—STRES. Life, 2020, 10, 362.	2.4	16
5	Dissimilar pigment regulation in Serpula lacrymans and Paxillus involutus during inter-kingdom interactions. Microbiology (United Kingdom), 2018, 164, 65-77.	1.8	23
6	Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites. ELife, 2018, 7, .	6.0	44
7	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	8.8	417
8	antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Research, 2017, 45, W36-W41.	14.5	1,196
9	Transcription Factors in Fungi: TFome Dynamics, Three Major Families, and Dual-Specificity TFs. Frontiers in Genetics, 2017, 8, 53.	2.3	105
10	Editorial: Systems Biology of Transcription Regulation. Frontiers in Genetics, 2016, 7, 124.	2.3	0
11	Data-based Reconstruction of Gene Regulatory Networks of Fungal Pathogens. Frontiers in Microbiology, 2016, 7, 570.	3.5	11
12	HapX Mediates Iron Homeostasis in the Pathogenic Dermatophyte Arthroderma benhamiae but Is Dispensable for Virulence. PLoS ONE, 2016, 11, e0150701.	2.5	13
13	Comparative genomics to explore phylogenetic relationship, cryptic sexual potential and host specificity of Rhynchosporium species on grasses. BMC Genomics, 2016, 17, 953.	2.8	33
14	Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current Biology, 2016, 26, 1577-1584.	3.9	175
15	Draft Genome Sequence of <i>Shewanella</i> sp. Strain P1-14-1, a Bacterial Inducer of Settlement and Morphogenesis in Larvae of the Marine Hydroid <i>Hydractinia echinata</i> . Genome Announcements, 2016, 4, .	0.8	4
16	Bacteria induce pigment formation in the basidiomycete <i>Serpula lacrymans</i> . Environmental Microbiology, 2016, 18, 5218-5227.	3.8	29
17	The <i>Aspergillus fumigatus</i> conidial melanin production is regulated by the bifunctional bHLH DevR and MADSâ€box RlmA transcription factors. Molecular Microbiology, 2016, 102, 321-335.	2.5	46
18	The hypoxiaâ€induced dehydrogenase HorA is required for coenzyme Q10 biosynthesis, azole sensitivity and virulence of <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2016, 101, 92-108.	2.5	24

EKATERINA SHELEST

#	Article	IF	CITATIONS
19	15 Genetic and Metabolic Aspects of Primary and Secondary Metabolism of the Zygomycetes. , 2016, , 361-385.		22
20	CASSIS and SMIPS: promoter-based prediction of secondary metabolite gene clusters in eukaryotic genomes. Bioinformatics, 2016, 32, 1138-1143.	4.1	102
21	Multimodular type I polyketide synthases in algae evolve by module duplications and displacement of AT domains in trans. BMC Genomics, 2015, 16, 1015.	2.8	33
22	Genome Sequences of Three <i>Pseudoalteromonas</i> Strains (P1-8, P1-11, and P1-30), Isolated from the Marine Hydroid <i>Hydractinia echinata</i> . Genome Announcements, 2015, 3, .	0.8	4
23	Draft Genome Sequences of Six <i>Pseudoalteromonas</i> Strains, P1-7a, P1-9, P1-13-1a, P1-16-1b, P1-25, and P1-26, Which Induce Larval Settlement and Metamorphosis in <i>Hydractinia echinata</i> . Genome Announcements, 2015, 3, .	0.8	8
24	Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nature Communications, 2015, 6, 7796.	12.8	131
25	Gene Expansion Shapes Genome Architecture in the Human Pathogen Lichtheimia corymbifera: An Evolutionary Genomics Analysis in the Ancient Terrestrial Mucorales (Mucoromycotina). PLoS Genetics, 2014, 10, e1004496.	3.5	80
26	2 Genomics to Study Basal Lineage Fungal Biology: Phylogenomics Suggests a Common Origin. , 2014, , 31-60.		7
27	Comments on the distribution and phylogeny of type I polyketide synthases and nonribosomal peptide synthetases in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3946-E3946.	7.1	4
28	Terrein Biosynthesis in Aspergillus terreus and Its Impact on Phytotoxicity. Chemistry and Biology, 2014, 21, 719-731.	6.0	106
29	Comparative Genome Analysis of <i>Trichophyton rubrum</i> and Related Dermatophytes Reveals Candidate Genes Involved in Infection. MBio, 2012, 3, e00259-12.	4.1	211
30	Novel traits of <i>Trichoderma</i> predicted through the analysis of its secretome. FEMS Microbiology Letters, 2012, 337, 1-9.	1.8	106
31	Evolutionary Imprint of Catalytic Domains in Fungal PKS–NRPS Hybrids. ChemBioChem, 2012, 13, 2363-2373.	2.6	34
32	Breaking the Silence: Protein Stabilization Uncovers Silenced Biosynthetic Gene Clusters in the Fungus Aspergillus nidulans. Applied and Environmental Microbiology, 2012, 78, 8234-8244.	3.1	64
33	The fungal αâ€∎minoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate. Molecular Microbiology, 2012, 86, 1508-1530.	2.5	46
34	Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biology, 2011, 12, R7.	9.6	181
35	SiTaR: a novel tool for transcription factor binding site prediction. Bioinformatics, 2011, 27, 2806-2811.	4.1	13
36	DistanceScan: a tool for promoter modeling. Bioinformatics, 2010, 26, 1460-1462.	4.1	7

EKATERINA SHELEST

#	Article	IF	CITATIONS
37	Activation of a Silent Fungal Polyketide Biosynthesis Pathway through Regulatory Cross Talk with a Cryptic Nonribosomal Peptide Synthetase Gene Cluster. Applied and Environmental Microbiology, 2010, 76, 8143-8149.	3.1	143
38	Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in <i>Aspergillus nidulans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14558-14563.	7.1	607
39	Transcription factors in fungi. FEMS Microbiology Letters, 2008, 286, 145-151.	1.8	142
40	Identification of the novel penicillin biosynthesis gene <i>aatB</i> of <i>Aspergillus nidulans</i> and its putative evolutionary relationship to this fungal secondary metabolism gene cluster. Molecular Microbiology, 2008, 70, 445-461.	2.5	40
41	Evaluating phylogenetic footprinting for human-rodent comparisons. Bioinformatics, 2006, 22, 430-437.	4.1	28
42	Construction of predictive promoter models on the example of antibacterial response of human epithelial cells. Theoretical Biology and Medical Modelling, 2005, 2, 2.	2.1	8