List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7060720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction of STIM1 with Endogenously Expressed Human Canonical TRP1 upon Depletion of Intracellular Ca2+ Stores. Journal of Biological Chemistry, 2006, 281, 28254-28264.	3.4	189
2	A Role for the Actin Cytoskeleton in the Initiation and Maintenance of Store-mediated Calcium Entry in Human Platelets. Journal of Biological Chemistry, 2000, 275, 7527-7533.	3.4	169
3	Coupling between inositol 1,4,5-trisphosphate receptors and human transient receptor potential channel 1 when intracellular Ca2+ stores are depleted. Biochemical Journal, 2000, 350, 631-635.	3.7	158
4	Orai1 Mediates the Interaction between STIM1 and hTRPC1 and Regulates the Mode of Activation of hTRPC1-forming Ca2+ Channels. Journal of Biological Chemistry, 2008, 283, 25296-25304.	3.4	149
5	The actin cytoskeleton in storeâ€mediated calcium entry. Journal of Physiology, 2000, 526, 221-229.	2.9	136
6	Endogenously Expressed Trp1 Is Involved in Store-mediated Ca2+ Entry by Conformational Coupling in Human Platelets. Journal of Biological Chemistry, 2002, 277, 42157-42163.	3.4	129
7	Melatonin induces mitochondrialâ€mediated apoptosis in human myeloid HLâ€60 cells. Journal of Pineal Research, 2009, 46, 392-400.	7.4	128
8	Hydrogen Peroxide Generation Induces pp60 Activation in Human Platelets. Journal of Biological Chemistry, 2004, 279, 1665-1675.	3.4	119
9	Thrombin induces apoptotic events through the generation of reactive oxygen species in human platelets. Journal of Thrombosis and Haemostasis, 2007, 5, 1283-1291.	3.8	115
10	TRPC channels and store-operated Ca2+ entry. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 223-230.	4.1	114
11	Hepatitis C virus NS5A and core proteins induce oxidative stress-mediated calcium signalling alterations in hepatocytes. Journal of Hepatology, 2009, 50, 872-882.	3.7	114
12	Ca2+ accumulation into acidic organelles mediated by Ca2+- and vacuolar H+-ATPases in human platelets. Biochemical Journal, 2005, 390, 243-252.	3.7	112
13	The inositol trisphosphate receptor antagonist 2-aminoethoxydiphenylborate (2-APB) blocks Ca2+ entry channels in human platelets: cautions for its use in studying Ca2+ influx. Cell Calcium, 2001, 30, 323-329.	2.4	111
14	TRPs in Pain Sensation. Frontiers in Physiology, 2017, 8, 392.	2.8	104
15	Activation of store-mediated calcium entry by secretion-like coupling between the inositol 1,4,5-trisphosphate receptor type II and human transient receptor potential (hTrp1) channels in human platelets. Biochemical Journal, 2001, 356, 191-198.	3.7	102
16	Chapter 3 Natriuretic Peptides in Vascular Physiology and Pathology. International Review of Cell and Molecular Biology, 2008, 268, 59-93.	3.2	99
17	Melatonin Reduces Apoptosis Induced by Calcium Signaling in Human Leukocytes: Evidence for the Involvement of Mitochondria and Bax Activation. Journal of Membrane Biology, 2010, 233, 105-118.	2.1	98
18	Hydrogen peroxide and peroxynitrite enhance Ca2+ mobilization and aggregation in platelets from type 2 diabetic patients. Biochemical and Biophysical Research Communications, 2005, 333, 794-802.	2.1	94

#	Article	IF	CITATIONS
19	Two distinct Ca2+ compartments show differential sensitivity to thrombin, ADP and vasopressin in human platelets. Cellular Signalling, 2006, 18, 373-381.	3.6	91
20	Farnesylcysteine analogues inhibit store-regulated Ca2+ entry in human platelets: evidence for involvement of small GTP-binding proteins and actin cytoskeleton. Biochemical Journal, 2000, 347, 183-192.	3.7	90
21	Dynamic interaction of hTRPC6 with the Orai1–STIM1 complex or hTRPC3 mediates its role in capacitative or non-capacitative Ca2+ entry pathways. Biochemical Journal, 2009, 420, 267-277.	3.7	85
22	Effect of hydrogen peroxide on Ca2+ mobilisation in human platelets through sulphydryl oxidation dependent and independent mechanisms. Biochemical Pharmacology, 2004, 67, 491-502.	4.4	83
23	Early caspase-3 activation independent of apoptosis is required for cellular function. Journal of Cellular Physiology, 2006, 209, 142-152.	4.1	83
24	Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton. Biochemical Journal, 2000, 351, 429-437.	3.7	82
25	Functional and physiopathological implications of TRP channels. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1772-1782.	4.1	81
26	Two Pathways for Store-mediated Calcium Entry Differentially Dependent on the Actin Cytoskeleton in Human Platelets. Journal of Biological Chemistry, 2004, 279, 29231-29235.	3.4	79
27	The Complex Role of Store Operated Calcium Entry Pathways and Related Proteins in the Function of Cardiac, Skeletal and Vascular Smooth Muscle Cells. Frontiers in Physiology, 2018, 9, 257.	2.8	74
28	TRPC3 Regulates Agonist-stimulated Ca2+ Mobilization by Mediating the Interaction between Type I Inositol 1,4,5-Trisphosphate Receptor, RACK1, and Orai1. Journal of Biological Chemistry, 2010, 285, 8045-8053.	3.4	73
29	Cholecystokinin-stimulated tyrosine phosphorylation of p125FAK and paxillin is mediated by phospholipase C-dependent and -independent mechanisms and requires the integrity of the actin cytoskeleton and participation of p21rho. Biochemical Journal, 1997, 327, 461-472.	3.7	72
30	Protein kinase C activates nonâ€capacitative calcium entry in human platelets. Journal of Physiology, 2000, 529, 159-169.	2.9	72
31	Role of lipid rafts in the interaction between hTRPC1, Orai1 and STIM1. Channels, 2008, 2, 401-403.	2.8	72
32	STIM and calcium channel complexes in cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1418-1426.	4.1	72
33	A role for cofilin in the activation of store-operated calcium entry by de novo conformational coupling in human platelets. Blood, 2006, 107, 973-979.	1.4	71
34	Phosphatidylinositol 4,5-bisphosphate enhances store-operated calcium entry through hTRPC6 channel in human platelets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 84-97.	4.1	71
35	The TRPC Ion Channels: Association with Orai1 and STIM1 Proteins and Participation in Capacitative and Non-capacitative Calcium Entry. Advances in Experimental Medicine and Biology, 2011, 704, 413-433.	1.6	71
36	Homocysteine, Intracellular Signaling and Thrombotic Disorders. Current Medicinal Chemistry, 2010, 17, 3109-3119.	2.4	69

#	Article	IF	CITATIONS
37	Platelet signalling abnormalities in patients with type 2 diabetes mellitus: A review. Blood Cells, Molecules, and Diseases, 2008, 41, 119-123.	1.4	68
38	Activation of store-mediated calcium entry by secretion-like coupling between the inositol 1,4,5-trisphosphate receptor type II and human transient receptor potential (hTrp1) channels in human platelets. Biochemical Journal, 2001, 356, 191.	3.7	68
39	Coupling between inositol 1,4,5-trisphosphate receptors and human transient receptor potential channel 1 when intracellular Ca2+ stores are depleted. Biochemical Journal, 2000, 350, 631.	3.7	67
40	STIM1 and STIM2 Are Located in the Acidic Ca2+ Stores and Associates with Orai1 upon Depletion of the Acidic Stores in Human Platelets. Journal of Biological Chemistry, 2011, 286, 12257-12270.	3.4	67
41	Urotensin-II promotes vascular smooth muscle cell proliferation through store-operated calcium entry and EGFR transactivation. Cardiovascular Research, 2013, 100, 297-306.	3.8	67
42	TRPC6 Channels Are Required for Proliferation, Migration and Invasion of Breast Cancer Cell Lines by Modulation of Orai1 and Orai3 Surface Exposure. Cancers, 2018, 10, 331.	3.7	67
43	Role of the ERK Pathway in the Activation of Store-mediated Calcium Entry in Human Platelets. Journal of Biological Chemistry, 2001, 276, 15659-15665.	3.4	66
44	Dual effect of hydrogen peroxide on store-mediated calcium entry in human platelets. Biochemical Pharmacology, 2004, 67, 1065-1076.	4.4	66
45	Biochemical and functional properties of the store-operated Ca2+ channels. Cellular Signalling, 2009, 21, 457-461.	3.6	65
46	Platelet function in hypertension. Blood Cells, Molecules, and Diseases, 2009, 42, 38-43.	1.4	65
47	Regulation of Plasma Membrane Ca2+-ATPase by Small GTPases and Phosphoinositides in Human Platelets. Journal of Biological Chemistry, 2000, 275, 19529-19535.	3.4	63
48	Thrombin induces activation and translocation of Bid, Bax and Bak to the mitochondria in human platelets. Journal of Thrombosis and Haemostasis, 2008, 6, 1780-1788.	3.8	63
49	Cyclic Nucleotides Modulate Store-mediated Calcium Entry through the Activation of Protein-tyrosine Phosphatases and Altered Actin Polymerization in Human Platelets. Journal of Biological Chemistry, 2001, 276, 15666-15675.	3.4	61
50	TRPC Channels in the SOCE Scenario. Cells, 2020, 9, 126.	4.1	61
51	STIM1 regulates acidic Ca2+ store refilling by interaction with SERCA3 in human platelets. Biochemical Pharmacology, 2008, 75, 2157-2164.	4.4	60
52	Phosphoinositides Are Required for Store-mediated Calcium Entry in Human Platelets. Journal of Biological Chemistry, 2000, 275, 9110-9113.	3.4	59
53	Role of STIM2 in cell function and physiopathology. Journal of Physiology, 2017, 595, 3111-3128.	2.9	59
54	Dynamic interaction of SARAF with STIM1 and Orai1 to modulate store-operated calcium entry. Scientific Reports, 2016, 6, 24452.	3.3	56

#	Article	IF	CITATIONS
55	Store-operated Ca2+ entry: Vesicle fusion or reversible trafficking and de novo conformational coupling?. Journal of Cellular Physiology, 2005, 205, 262-269.	4.1	55
56	TRP Channels in Angiogenesis and Other Endothelial Functions. Frontiers in Physiology, 2018, 9, 1731.	2.8	55
57	A Role for the Actin Cytoskeleton in the Initiation and Maintenance of Store-Mediated Calcium Entry in Human Platelets. Trends in Cardiovascular Medicine, 2000, 10, 327-332.	4.9	54
58	Intracellular Ca2+ store depletion induces the formation of macromolecular complexes involving hTRPC1, hTRPC6, the type II IP3 receptor and SERCA3 in human platelets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1163-1176.	4.1	54
59	Olive tree wood phenolic compounds with human platelet antiaggregant properties. Blood Cells, Molecules, and Diseases, 2009, 42, 279-285.	1.4	54
60	Molecular modulators of store-operated calcium entry. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2037-2043.	4.1	53
61	Ca2+-independent activation of Bruton's tyrosine kinase is required for store-mediated Ca2+ entry in human platelets. Cellular Signalling, 2005, 17, 1011-1021.	3.6	52
62	Evidence for secretion-like coupling involving pp60src in the activation and maintenance of store-mediated Ca2+ entry in mouse pancreatic acinar cells. Biochemical Journal, 2003, 370, 255-263.	3.7	51
63	The cytoskeleton plays a modulatory role in the association between STIM1 and the Ca2+ channel subunits Orai1 and TRPC1. Biochemical Pharmacology, 2011, 82, 400-410.	4.4	51
64	Orais and STIMs: physiological mechanisms and disease . Journal of Cellular and Molecular Medicine, 2012, 16, 407-424.	3.6	51
65	Intracellular Calcium Release from Human Platelets: Different Messengers for Multiple Stores. Trends in Cardiovascular Medicine, 2008, 18, 57-61.	4.9	50
66	Lipid rafts modulate the activation but not the maintenance of store-operated Ca2+ entry. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 1083-1093.	4.1	50
67	miR-125a, miR-139 and miR-324 contribute to Urocortin protection against myocardial ischemia-reperfusion injury. Scientific Reports, 2017, 7, 8898.	3.3	50
68	TRP Channels: Current Perspectives in the Adverse Cardiac Remodeling. Frontiers in Physiology, 2019, 10, 159.	2.8	49
69	STIM1, Orai1 and hTRPC1 are important for thrombin- and ADP-induced aggregation in human platelets. Archives of Biochemistry and Biophysics, 2009, 490, 137-144.	3.0	48
70	Store-Operated Ca2+ Entry. Advances in Experimental Medicine and Biology, 2012, 740, 349-382.	1.6	47
71	Store-operated Ca2+ entry and tyrosine kinase pp60src hyperactivity are modulated by hyperglycemia in platelets from patients with non insulin-dependent diabetes mellitus. Archives of Biochemistry and Biophysics, 2004, 432, 261-268.	3.0	45
72	Enhanced expression of STIM1/Orai1 and TRPC3 in platelets from patients with type 2 diabetes mellitus. Blood Cells, Molecules, and Diseases, 2009, 43, 211-213.	1.4	45

#	Article	IF	CITATIONS
73	Apelin: an antithrombotic factor that inhibits platelet function. Blood, 2016, 127, 908-920.	1.4	45
74	The ERK Cascade, a New Pathway Involved in the Activation of Store-Mediated Calcium Entry in Human Platelets. Trends in Cardiovascular Medicine, 2002, 12, 229-234.	4.9	44
75	Effects of reactive oxygen species on actin filament polymerisation and amylase secretion in mouse pancreatic acinar cells. Cellular Signalling, 2002, 14, 547-556.	3.6	44
76	Antiaggregant effects of Arbutus unedo extracts in human platelets. Journal of Ethnopharmacology, 2007, 113, 325-331.	4.1	44
77	STIM and Orai1 Variants in Store-Operated Calcium Entry. Frontiers in Pharmacology, 2015, 6, 325.	3.5	44
78	(Ⱂ)‑Oleocanthal inhibits proliferation and migration by modulating Ca2+ entry through TRPC6 in breast cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 474-485.	4.1	44
79	Reduced plasma membrane Ca2+-ATPase function in platelets from patients with non-insulin-dependent diabetes mellitus. Haematologica, 2004, 89, 1142-4.	3.5	44
80	Orai1 and Orai2 mediate store-operated calcium entry that regulates HL60 cell migration and FAK phosphorylation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1064-1070.	4.1	43
81	Endogenously generated reactive oxygen species reduce PMCA activity in platelets from patients with non-insulin-dependent diabetes mellitus. Platelets, 2006, 17, 283-288.	2.3	41
82	Differential involvement of thrombin receptors in Ca2+ release from two different intracellular stores in human platelets. Biochemical Journal, 2007, 401, 167-174.	3.7	41
83	Capacitative and non-capacitative signaling complexes in human platelets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1242-1251.	4.1	41
84	Medicinal Plants with Antiplatelet Activity. Phytotherapy Research, 2016, 30, 1059-1071.	5.8	41
85	A role for SNAP-25 but not VAMPs in store-mediated Ca2+entry in human platelets. Journal of Physiology, 2004, 558, 99-109.	2.9	39
86	Functional relevance of the de novo coupling between hTRPC1 and type II IP3 receptor in store-operated Ca2+ entry in human platelets. Cellular Signalling, 2008, 20, 737-747.	3.6	39
87	Expression and control of C-type natriuretic peptide in rat vascular smooth muscle cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R156-R165.	1.8	37
88	Urotensin-II Signaling Mechanism in Rat Coronary Artery. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1325-1332.	2.4	37
89	Coupling between inositol 1,4,5-trisphosphate receptors and human transient receptor potential channel 1 when intracellular Ca2+ stores are depleted. Biochemical Journal, 2000, 350 Pt 3, 631-5.	3.7	37
90	Recent advances in natriuretic peptide research. Journal of Cellular and Molecular Medicine, 2007, 11, 1263-1271.	3.6	36

#	Article	IF	CITATIONS
91	Adenylyl Cyclase Type 8 Overexpression Impairs Phosphorylation-Dependent Orai1 Inactivation and Promotes Migration in MDA-MB-231 Breast Cancer Cells. Cancers, 2019, 11, 1624.	3.7	36
92	A role for 5,6-epoxyeicosatrienoic acid in calcium entry byde novoconformational coupling in human platelets. Journal of Physiology, 2006, 570, 309-323.	2.9	35
93	Cinnamtannin B-1 from bay wood reduces abnormal intracellular Ca2+ homeostasis and platelet hyperaggregability in type 2 diabetes mellitus patients. Archives of Biochemistry and Biophysics, 2007, 457, 235-242.	3.0	35
94	Homers regulate calcium entry and aggregation in human platelets: a role for Homers in the association between STIM1 and Orai1. Biochemical Journal, 2012, 445, 29-38.	3.7	35
95	Store-Operated Ca2+ Entry in Breast Cancer Cells: Remodeling and Functional Role. International Journal of Molecular Sciences, 2018, 19, 4053.	4.1	35
96	Phytochemical, Anti-diabetic and Cardiovascular Properties of Urtica dioica L. (Urticaceae): A Review. Mini-Reviews in Medicinal Chemistry, 2018, 19, 63-71.	2.4	35
97	Fibrinogen binding to the integrin αIIbβ3 modulates store-mediated calcium entry in human platelets. Blood, 2001, 97, 2648-2656.	1.4	34
98	Inactivation of Proprotein Convertases in T Cells Inhibits PD-1 Expression and Creates a Favorable Immune Microenvironment in Colorectal Cancer. Cancer Research, 2019, 79, 5008-5021.	0.9	34
99	Orai1 and TRPC1 Proteins Co-localize with CaV1.2 Channels to Form a Signal Complex in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2016, 291, 21148-21159.	3.4	33
100	Dual role of tubulin-cytoskeleton in store-operated calcium entry in human platelets. Cellular Signalling, 2007, 19, 2147-2154.	3.6	32
101	Enhanced exocytotic-like insertion of Orai1 into the plasma membrane upon intracellular Ca ²⁺ store depletion. American Journal of Physiology - Cell Physiology, 2008, 294, C1323-C1331.	4.6	32
102	STIM1 tyrosine-phosphorylation is required for STIM1-Orai1 association in human platelets. Cellular Signalling, 2012, 24, 1315-1322.	3.6	32
103	Cytoskeletal and scaffolding proteins as structural and functional determinants of TRP channels. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 658-664.	2.6	32
104	Dynamics of calcium fluxes in human platelets assessed in calcium-free medium. Biochemical and Biophysical Research Communications, 2005, 334, 779-786.	2.1	31
105	Cinnamtannin B-1 from bay wood exhibits antiapoptotic effects in human platelets. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 489-498.	4.9	31
106	Store-operated Ca2+ entry is sensitive to the extracellular Ca2+ concentration through plasma membrane STIM1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1614-1622.	4.1	31
107	Lipid rafts are essential for the regulation of SOCE by plasma membrane resident STIM1 in human platelets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 431-437.	4.1	31
108	Homer proteins mediate the interaction between STIM1 and Cav1.2 channels. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1145-1153.	4.1	31

#	Article	IF	CITATIONS
109	Are tyrosine phosphorylation of p125FAK and paxillin or the small GTP binding protein, Rho, needed for CCK-stimulated pancreatic amylase secretion?. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1404, 412-426.	4.1	30
110	N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine induces apoptosis through the activation of caspases-3 and -8 in human platelets. A role for endoplasmic reticulum stress. Journal of Thrombosis and Haemostasis, 2009, 7, 992-999.	3.8	30
111	Acidic NAADP-releasable Ca2+ compartments in the megakaryoblastic cell line MEG01. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1483-1494.	4.1	30
112	Homer Proteins in Ca ²⁺ Entry. IUBMB Life, 2013, 65, 497-504.	3.4	30
113	Transient receptor potential ankyrin-1 (TRPA1) modulates store-operated Ca 2+ entry by regulation of STIM1-Orai1 association. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3025-3034.	4.1	30
114	Relationship between calcium mobilization and platelet α- and δ-granule secretion. A role for TRPC6 in thrombin-evoked δ-granule exocytosis. Archives of Biochemistry and Biophysics, 2015, 585, 75-81.	3.0	30
115	Store-operated Ca2+ Entry-associated Regulatory factor (SARAF) Plays an Important Role in the Regulation of Arachidonate-regulated Ca2+ (ARC) Channels. Journal of Biological Chemistry, 2016, 291, 6982-6988.	3.4	30
116	Farnesylcysteine analogues inhibit store-regulated Ca2+ entry in human platelets: evidence for involvement of small GTP-binding proteins and actin cytoskeleton. Biochemical Journal, 2000, 347, 183.	3.7	29
117	Effect of homocysteine on calcium mobilization and platelet function in type 2 diabetes mellitus. Journal of Cellular and Molecular Medicine, 2008, 12, 2015-2026.	3.6	29
118	Second Messenger-Operated Calcium Entry Through TRPC6. Advances in Experimental Medicine and Biology, 2016, 898, 201-249.	1.6	29
119	CCK causes rapid tyrosine phosphorylation of p125FAK focal adhesion kinase and paxillin in rat pancreatic acini. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1358, 189-199.	4.1	28
120	Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton. Biochemical Journal, 2000, 351, 429.	3.7	28
121	Store-independent Orai1-mediated Ca2+ entry and cancer. Cell Calcium, 2019, 80, 1-7.	2.4	28
122	Tyrosine phosphorylation / dephosphorylation balance is involved in thrombin-evoked microtubular reorganisation in human platelets. Thrombosis and Haemostasis, 2007, 98, 375-384.	3.4	27
123	Cinnamtannin B-1 as an antioxidant and platelet aggregation inhibitor. Life Sciences, 2008, 82, 977-982.	4.3	27
124	Unraveling STIM2 function. Journal of Physiology and Biochemistry, 2012, 68, 619-633.	3.0	27
125	Regulation of Platelet Function by Orai, STIM and TRP. Advances in Experimental Medicine and Biology, 2016, 898, 157-181.	1.6	27
126	Molecular Basis and Regulation of Store-Operated Calcium Entry. Advances in Experimental Medicine and Biology, 2020, 1131, 445-469.	1.6	27

#	Article	IF	CITATIONS
127	Caspases 3 and 9 are translocated to the cytoskeleton and activated by thrombin in human platelets. Evidence for the involvement of PKC and the actin filament polymerization. Cellular Signalling, 2006, 18, 1252-1261.	3.6	26
128	Filamin A Modulates Store-Operated Ca ²⁺ Entry by Regulating STIM1 (Stromal Interaction) Tj ETQq0 Biology, 2018, 38, 386-397.	0 0 rgBT 2.4	/Overlock 1 26
129	Fine-tuning of store-operated calcium entry by fast and slow Ca2+-dependent inactivation: Involvement of SARAF. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 463-469.	4.1	26
130	Characterization of the Intracellular Mechanisms Involved in the Antiaggregant Properties of Cinnamtannin B-1 from Bay Wood in Human Platelets. Journal of Medicinal Chemistry, 2007, 50, 3937-3944.	6.4	25
131	Attenuated store-operated divalent cation entry and association between STIM1, Orai1, hTRPC1 and hTRPC6 in platelets from type 2 diabetic patients. Blood Cells, Molecules, and Diseases, 2011, 46, 252-260.	1.4	25
132	FKBP52 is involved in the regulation of SOCE channels in the human platelets and MEG 01 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 652-662.	4.1	25
133	Regulators of G-Protein-Signaling Proteins: Negative Modulators of G-Protein-Coupled Receptor Signaling. International Review of Cell and Molecular Biology, 2015, 317, 97-183.	3.2	25
134	EFHB is a Novel Cytosolic Ca2+ Sensor That Modulates STIM1-SARAF Interaction. Cellular Physiology and Biochemistry, 2018, 51, 1164-1178.	1.6	25
135	STIM1 phosphorylation at Y316 modulates its interaction with SARAF and the activation of SOCE and <i>I</i> CRAC. Journal of Cell Science, 2019, 132, .	2.0	25
136	NO1, a New Sigma 2 Receptor/TMEM97 Fluorescent Ligand, Downregulates SOCE and Promotes Apoptosis in the Triple Negative Breast Cancer Cell Lines. Cancers, 2020, 12, 257.	3.7	25
137	ELA/APELA precursor cleaved by furin displays tumor suppressor function in renal cell carcinoma through mTORC1 activation. JCI Insight, 2020, 5, .	5.0	25
138	SERCA2b and 3 play a regulatory role in store-operated calcium entry in human platelets. Cellular Signalling, 2008, 20, 337-346.	3.6	24
139	SERCA2b Activity Is Regulated by Cyclophilins in Human Platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 419-425.	2.4	24
140	Functional role of the calmodulin- and inositol 1,4,5-trisphosphate receptor-binding (CIRB) site of TRPC6 in human platelet activation. Cellular Signalling, 2011, 23, 1850-1856.	3.6	24
141	SARAF modulates TRPC1, but not TRPC6, channel function in a STIM1-independent manner. Biochemical Journal, 2016, 473, 3581-3595.	3.7	24
142	Modulation of Platelet Function and Signaling by Flavonoids. Mini-Reviews in Medicinal Chemistry, 2011, 11, 131-142.	2.4	23
143	Acidic Ca2+ stores in platelets. Cell Calcium, 2011, 50, 168-174.	2.4	23
144	TRPC6 participates in the regulation of cytosolic basal calcium concentration in murine resting platelets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 789-796.	4.1	23

#	Article	IF	CITATIONS
145	Involvement of SNARE proteins in thrombin-induced platelet aggregation: Evidence for the relevance of Ca2+ entry. Archives of Biochemistry and Biophysics, 2007, 465, 16-25.	3.0	22
146	Homocysteine induces caspase activation by endoplasmic reticulum stress in platelets from type 2 diabetics and healthy donors. Thrombosis and Haemostasis, 2010, 103, 1022-1032.	3.4	22
147	Activation of m3 Muscarinic Receptors Induces Rapid Tyrosine Phosphorylation of p125FAK, p130cas, and Paxillin in Rat Pancreatic Acini. Archives of Biochemistry and Biophysics, 2000, 377, 85-94.	3.0	21
148	Cleavage of SNAP-25 and VAMP-2 impairs store-operated Ca2+entry in mouse pancreatic acinar cells. American Journal of Physiology - Cell Physiology, 2005, 288, C214-C221.	4.6	21
149	Urocortin-2 Prevents Dysregulation of Ca2+ Homeostasis and Improves Early Cardiac Remodeling After Ischemia and Reperfusion. Frontiers in Physiology, 2018, 9, 813.	2.8	21
150	Dendroaspis natriuretic peptide-like immunoreactivity and its regulation in rat aortic vascular smooth muscle. Peptides, 2002, 23, 23-29.	2.4	20
151	Role of Oxidant Scavengers in the Prevention of Ca2+ Homeostasis Disorders. Molecules, 2010, 15, 7167-7187.	3.8	20
152	Two distinct calcium pools in the endoplasmic reticulum of HEK-293T cells. Biochemical Journal, 2011, 435, 227-235.	3.7	20
153	Store-Operated Calcium Entry: Unveiling the Calcium Handling Signalplex. International Review of Cell and Molecular Biology, 2015, 316, 183-226.	3.2	20
154	TRPC Channels: Dysregulation and Ca2+ Mishandling in Ischemic Heart Disease. Cells, 2020, 9, 173.	4.1	20
155	Farnesylcysteine analogues inhibit store-regulated Ca2+ entry in human platelets: evidence for involvement of small GTP-binding proteins and actin cytoskeleton. Biochemical Journal, 2000, 347 Pt 1, 183-92.	3.7	20
156	Tumor necrosis factor-α inhibits store-mediated Ca2+ entry in the human hepatocellular carcinoma cell line HepG2. American Journal of Physiology - Cell Physiology, 2001, 280, C1636-C1644.	4.6	19
157	Disruption of the filamentous actin cytoskeleton is necessary for the activation of capacitative calcium entry in naive smooth muscle cells. Cellular Signalling, 2005, 17, 635-645.	3.6	19
158	Calcium Signalling and Reactive Oxygen Species in Non-Excitable Cells. Mini-Reviews in Medicinal Chemistry, 2006, 6, 409-415.	2.4	19
159	Role of STIM1 in the surface expression of SARAF. Channels, 2017, 11, 84-88.	2.8	19
160	Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton. Biochemical Journal, 2000, 351 Pt 2, 429-37.	3.7	19
161	TRP channels and calcium entry in human platelets. Blood, 2002, 100, 4245-4246.	1.4	18
162	Synthesis and evaluation of the platelet antiaggregant properties of phenolic antioxidants structurally related to rosmarinic acid. Bioorganic Chemistry, 2010, 38, 108-114.	4.1	18

#	Article	IF	CITATIONS
163	The polybasic lysine-rich domain of plasma membrane-resident STIM1 is essential for the modulation of store-operated divalent cation entry by extracellular calcium. Cellular Signalling, 2013, 25, 1328-1337.	3.6	18
164	Water deprivation enhances the inhibitory effect of natriuretic peptides on cAMP synthesis in rat renal glomeruli. American Journal of Physiology - Renal Physiology, 2004, 287, F418-F426.	2.7	17
165	Thrombin-induced caspases 3 and 9 translocation to the cytoskeleton is independent of changes in cytosolic calcium in human platelets. Blood Cells, Molecules, and Diseases, 2006, 36, 392-401.	1.4	17
166	Longâ€ŧerm <scp>mTOR</scp> inhibitors administration evokes altered calcium homeostasis and platelet dysfunction in kidney transplant patients. Journal of Cellular and Molecular Medicine, 2013, 17, 636-647.	3.6	17
167	Involvement of stanniocalcins in the deregulation of glycaemia in obese mice and type 2 diabetic patients. Journal of Cellular and Molecular Medicine, 2018, 22, 684-694.	3.6	17
168	Orai2 Modulates Store-Operated Ca2+ Entry and Cell Cycle Progression in Breast Cancer Cells. Cancers, 2022, 14, 114.	3.7	17
169	Melatonin, as an adjuvantâ€like agent, enhances platelet responsiveness. Journal of Pineal Research, 2009, 46, 275-285.	7.4	16
170	STIM1 regulates TRPC6 heteromultimerization and subcellular location. Biochemical Journal, 2014, 463, 373-381.	3.7	16
171	Melatonin downregulates TRPC6, impairing store-operated calcium entry in triple-negative breast cancer cells. Journal of Biological Chemistry, 2021, 296, 100254.	3.4	16
172	Physical properties of two types of calcium stores and SERCAs in human platelets. Molecular and Cellular Biochemistry, 2008, 311, 9-18.	3.1	15
173	Melatonin enhances the immune response to vaccination against A1 and C strains of Dichelobacter nodosus. Vaccine, 2009, 27, 1566-1570.	3.8	15
174	Transient Receptor Potential Channels in Human Platelets: Expression and Functional Role. Current Molecular Medicine, 2012, 12, 1319-1328.	1.3	15
175	Two-pore channel 2 (TPC2) modulates store-operated Ca2+ entry. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1976-1983.	4.1	15
176	TRPC6 channel and its implications in breast cancer: an overview. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118828.	4.1	15
177	Anticancer molecular mechanisms of oleocanthal. Phytotherapy Research, 2020, 34, 2820-2834.	5.8	15
178	Efecto colaborador de SERCA y PMCA en la homeostasis del calcio citosólico en plaquetas humanas. Journal of Physiology and Biochemistry, 2005, 61, 507-516.	3.0	14
179	PGRMC1 Inhibits Progesterone-Evoked Proliferation and Ca2+ Entry Via STIM2 in MDA-MB-231 Cells. International Journal of Molecular Sciences, 2020, 21, 7641.	4.1	14
180	Arachidonic Acid Attenuates Cell Proliferation, Migration and Viability by a Mechanism Independent on Calcium Entry. International Journal of Molecular Sciences, 2020, 21, 3315.	4.1	14

#	Article	IF	CITATIONS
181	A-type natriuretic peptide receptor in the spontaneously hypertensive rat kidney. Peptides, 2002, 23, 1637-1647.	2.4	13
182	Platelet signalling: calcium. , 2002, , 260-271.		13
183	Role of Calcium Signals on Hydrogen Peroxide-Induced Apoptosis in Human Myeloid HL-60 Cells. International Journal of Biomedical Science, 2009, 5, 246-56.	0.1	13
184	Characteristics of the renal C-type natriuretic peptide receptor in hypertrophied and developing rat kidney. Journal of Molecular Endocrinology, 2005, 35, 519-530.	2.5	12
185	Intracellular Ca2+ homeostasis and aggregation in platelets are impaired by ethanol through the generation of H2O2 and oxidation of sulphydryl groups. Archives of Biochemistry and Biophysics, 2006, 452, 9-16.	3.0	12
186	Discovering the mechanism of capacitative calcium entry. American Journal of Physiology - Cell Physiology, 2006, 291, C1104-C1106.	4.6	12
187	Acidic-store depletion is required for human platelet aggregation. Blood Coagulation and Fibrinolysis, 2009, 20, 511-516.	1.0	12
188	SARAF and Orai1 Contribute to Endothelial Cell Activation and Angiogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 639952.	3.7	12
189	Functional role of TRPC6 and STIM2 in cytosolic and endoplasmic reticulum Ca2+ content in resting estrogen receptor-positive breast cancer cells. Biochemical Journal, 2020, 477, 3183-3197.	3.7	12
190	Flavonoids and Platelet-Derived Thrombotic Disorders. Current Medicinal Chemistry, 2019, 26, 7035-7047.	2.4	12
191	Molecular Interplay between Platelets and the Vascular Wall in Thrombosis and Hemostasis. Current Vascular Pharmacology, 2013, 11, 409-430.	1.7	12
192	A role for phosphoinositides in tyrosine phosphorylation of p125 focal adhesion kinase in rat pancreatic acini. Cellular Signalling, 2000, 12, 173-182.	3.6	11
193	Transient Receptor Potential Channels and Intracellular Signaling. International Review of Cytology, 2007, 256, 35-67.	6.2	11
194	Vaccination prepartum enhances the beneficial effects of melatonin on the immune response and reduces platelet responsiveness in sheep. BMC Veterinary Research, 2012, 8, 84.	1.9	11
195	The canonical transient receptor potential 6 (TRPC6) channel is sensitive to extracellular pH in mouse platelets. Blood Cells, Molecules, and Diseases, 2014, 52, 108-115.	1.4	11
196	Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca2+ Homeostasis. Reviews of Physiology, Biochemistry and Pharmacology, 2020, 179, 73-116.	1.6	11
197	Calcium Entry Pathways in Non-excitable Cells. Preface. Advances in Experimental Medicine and Biology, 2016, 898, vii-viii.	1.6	11
198	Dietary virgin olive oil enhances secretagogue-evoked calcium signaling in rat pancreatic acinar cells. Nutrition, 2004, 20, 536-541.	2.4	10

#	Article	IF	CITATIONS
199	Alterations in intracellular calcium homeostasis and platelet aggregation induced by ethanol. Biochemical and Biophysical Research Communications, 2006, 341, 917-924.	2.1	10
200	FKBP25 and FKBP38 regulate non-capacitative calcium entry through TRPC6. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2684-2696.	4.1	10
201	Historical Overview of Store-Operated Ca2+ Entry. Advances in Experimental Medicine and Biology, 2016, 898, 3-24.	1.6	10
202	Furin Prodomain ppFurin Enhances Ca2+ Entry Through Orai and TRPC6 Channels' Activation in Breast Cancer Cells. Cancers, 2021, 13, 1670.	3.7	10
203	Pathophysiological Significance of Store-Operated Calcium Entry in Cardiovascular and Skeletal Muscle Disorders and Angiogenesis. Advances in Experimental Medicine and Biology, 2020, 1131, 489-504.	1.6	10
204	Fine-tuning of microRNAs in Type 2 Diabetes Mellitus. Current Medicinal Chemistry, 2019, 26, 4102-4118.	2.4	10
205	Urtica dioica extract reduces platelet hyperaggregability in type 2 diabetes mellitus by inhibition of oxidant production, Ca ²⁺ mobilization and protein tyrosine phosphorylation. Journal of Applied Biomedicine, 2007, 5, 105-113.	1.7	10
206	Differences between natriuretic peptide receptors in the olfactory bulb and hypothalamus from spontaneously hypertensive and normotensive rat brain. Neuroscience Research, 2003, 47, 421-429.	1.9	9
207	Receptor subtypes for vasonatrin peptide in renal glomeruli and arteries. Regulatory Peptides, 2005, 129, 183-189.	1.9	9
208	Altered calcium signalling in platelets from bile-duct-ligated rats. Clinical Science, 2007, 112, 167-174.	4.3	9
209	Effect of homocysteine on calcium mobilization and platelet function in type 2 diabetes mellitus. Journal of Cellular and Molecular Medicine, 2008, 12, 2586-2597.	3.6	9
210	Role of homocysteine and folic acid on the altered calcium homeostasis of platelets from rats with biliary cirrhosis. Platelets, 2017, 28, 698-705.	2.3	9
211	SARAF and EFHB Modulate Store-Operated Ca2+ Entry and Are Required for Cell Proliferation, Migration and Viability in Breast Cancer Cells. Cancers, 2021, 13, 4160.	3.7	9
212	Role of Orai3 in the Pathophysiology of Cancer. International Journal of Molecular Sciences, 2021, 22, 11426.	4.1	9
213	Orai1α, but not Orai1β, co-localizes with TRPC1 and is required for its plasma membrane location and activation in HeLa cells. Cellular and Molecular Life Sciences, 2022, 79, 33.	5.4	9
214	Cardiovascular and Hemostatic Disorders: SOCE and Ca2+ Handling in Platelet Dysfunction. Advances in Experimental Medicine and Biology, 2017, 993, 453-472.	1.6	8
215	Store-Operated Calcium Entry and Its Implications in Cancer Stem Cells. Cells, 2022, 11, 1332.	4.1	8
216	hTRPC1-associated α-actinin, and not hTRPC1 itself, is tyrosine phosphorylated during human platelet activation. Journal of Thrombosis and Haemostasis, 2007, 5, 2476-2483.	3.8	7

#	Article	IF	CITATIONS
217	Role of mTOR1 and mTOR2 complexes in MEG-01 cell physiology. Thrombosis and Haemostasis, 2015, 114, 969-981.	3.4	7
218	Secretin potentiates guinea pig pancreatic response to cholecystokinin by a cholinergic mechanism. Canadian Journal of Physiology and Pharmacology, 1996, 74, 1342-1350.	1.4	6
219	Ca2+leakage rate from agonist-sensitive intracellular pools is altered in platelets from patients with type 2 diabetes. Platelets, 2011, 22, 284-293.	2.3	6
220	The TRPV1 ion channel is expressed in human but not mouse platelets. Platelets, 2014, 25, 390-392.	2.3	6
221	Phospholipase A2 as a Molecular Determinant of Store-Operated Calcium Entry. Advances in Experimental Medicine and Biology, 2016, 898, 111-131.	1.6	6
222	TMEM97 facilitates the activation of SOCE by downregulating the association of cholesterol to Orai1 in MDA-MB-231 cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158906.	2.4	6
223	Non-coding RNAs and Ischemic Cardiovascular Diseases. Advances in Experimental Medicine and Biology, 2020, 1229, 259-271.	1.6	6
224	Pharmacology of TRP Channels in the Vasculature. Current Vascular Pharmacology, 2013, 11, 480-489.	1.7	6
225	Tyrosine phosphorylation / dephosphorylation balance is involved in thrombin-evoked microtubular reorganisation in human platelets. Thrombosis and Haemostasis, 2007, 98, 375-84.	3.4	6
226	Patterning of renal cGMP production by the natriuretic peptide receptor type A and blood pressure in spontaneously hypertensive rats. Regulatory Peptides, 2004, 119, 45-51.	1.9	5
227	Sigma-1 receptors: a new pathway for the modulation of store-operated calcium entry. Biochemical Journal, 2016, 473, e9-e10.	3.7	5
228	Immunophilins are Involved in the Altered Platelet Aggregation Observed in Patients with Type 2 Diabetes Mellitus. Current Medicinal Chemistry, 2013, 20, 1912-1921.	2.4	5
229	Involvement of ryanodine-operated channels in tert-butylhydroperoxide-evoked Ca2+ mobilisation in pancreatic acinar cells. Journal of Experimental Biology, 2006, 209, 2156-2164.	1.7	4
230	Evaluation of the antiaggregant activity of ascorbyl phenolic esters with antioxidant properties. Journal of Physiology and Biochemistry, 2015, 71, 415-434.	3.0	4
231	Different effect of ATP on ANP receptor guanylyl cyclase in spontaneously hypertensive and normotensive rats. Acta Physiologica, 2006, 188, 195-206.	3.8	3
232	Immunophilins and Thrombotic Disorders. Current Medicinal Chemistry, 2011, 18, 5414-5423.	2.4	3
233	Experiencias de Docencia Virtual en Facultades de Medicina Españolas durante la pandemia COVID-19 (I): AnatomÃa, FisiologÃa, FisiopatologÃa, OncologÃa. Revista EspaÑola De EducaciÓn MÉdica, 2020, 1, 32-39.	0.1	3
234	The Orai1-AC8 Interplay: How Breast Cancer Cells Escape from Orai1 Channel Inactivation. Cells, 2021, 10, 1308.	4.1	3

#	Article	IF	CITATIONS
235	Histamine-Evoked Potassium Release in the Mouse and Guinea Pig Pancreas. Pancreas, 1996, 12, 396-400.	1.1	2
236	G-Protein Coupled Receptors and Calcium Signaling in Development. Current Topics in Developmental Biology, 2004, 65, 189-210.	2.2	2
237	Renal atrial natriuretic peptide receptors binding properties and function are resistant to DOCA–salt-induced hypertension in rats. Regulatory Peptides, 2006, 137, 114-120.	1.9	2
238	Introduction: Overview of the Pathophysiological Implications of Store-Operated Calcium Entry in Mammalian Cells. Advances in Experimental Medicine and Biology, 2017, 993, 391-395.	1.6	2
239	Filamin A modulates platelet function. Aging, 2018, 10, 3052-3053.	3.1	2
240	PKC-Mediated Orai1 Channel Phosphorylation Modulates Ca2+ Signaling in HeLa Cells. Cells, 2022, 11, 2037.	4.1	2
241	Acetylcholine-evoked potassium transport in the isolated guinea-pig pancreas. Experimental Physiology, 1997, 82, 149-159.	2.0	1
242	Apoptotic Events in Blood Cells. , 2009, , 129-149.		1
243	Immunophilin Dysfunction and Neuropathology. Current Medicinal Chemistry, 2011, 18, 5398-5407.	2.4	1
244	The membrane potential modulates thrombin-stimulated Ca2+ mobilization and platelet aggregation. Archives of Biochemistry and Biophysics, 2013, 538, 130-137.	3.0	1
245	Secretin potentiates guinea pig pancreatic response to cholecystokinin by a cholinergic mechanism. Canadian Journal of Physiology and Pharmacology, 1996, 74, 1342-1350.	1.4	1
246	Protein complex immunological separation assay (ProCISA): a technique for investigating single protein properties. Journal of Physiology and Biochemistry, 2008, 64, 169-177.	3.0	0
247	Corrigendum to "Renal atrial natriuretic peptide receptors binding properties and function are resistant to DOCA–salt-induced hypertension in rats―[Regul. Pept. 137 (2006) 114–120]. Regulatory Peptides, 2008, 147, 111.	1.9	0
248	Editorial [Hot Topic: A Role for Immunophilins in Cellular Signalling in Health and Disease (Guest) Tj ETQq0 0 0 rg Chemistry, 2011, 18, 5322-5323.	BT /Overlo 2.4	ock 10 Tf 50 2 0
249	Editorial: Recent Advances in Cardiovascular and Circulatory Signalling. Current Vascular Pharmacology, 2013, 11, 407-408.	1.7	0
250	Urotensin-II Induces Vascular Smooth Muscle Cell Proliferation and Creb Phosporylation Through Store Operated Calcium Entry and EGFR Transactivation. Biophysical Journal, 2014, 106, 318a.	0.5	0
251	Fluorescence-Based Measurements of the CRAC Channel Activity in Cell Populations. Methods in Molecular Biology, 2018, 1843, 69-82.	0.9	0
252	Special Issue on New Cellular, Genetic and Proteomic Tools in the Prevention and Management of Diabetes Mellitus. Current Medicinal Chemistry, 2019, 26, 4100-4101.	2.4	0

#	Article	IF	CITATIONS
253	Roles of Calcium and Tyrosine Kinases in the Pathogenesis of Type 2 Diabetes Mellitus. Current Enzyme Inhibition, 2006, 2, 79-89.	0.4	0
254	Agonistâ€induced Ca 2+ mobilization is regulated by a complex involving Orai1, hTRPC3 and the type I inositol 1,4,5â€trisphosphate receptor. FASEB Journal, 2010, 24, 869.2.	0.5	0
255	Lipid rafts determine association of Orai1, STIM1 and the TRPC1 and TRPC6 proteins. FASEB Journal, 2010, 24, 481.2.	0.5	0
256	Inhibitory effect of Ca(2+) on ATP-mediated stimulation of NPR-A-coupled guanylyl cyclase in renal glomeruli from spontaneously hypertensive and normotensive rats. Journal of Physiology and Pharmacology, 2006, 57, 359-73.	1.1	0