
David G Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7060479/publications.pdf Version: 2024-02-01

DAVID C. PLISSELL

#	Article	lF	CITATIONS
1	lron limitation in M. tuberculosis has broad impact on central carbon metabolism. Communications Biology, 2022, 5, .	2.0	13
2	Lnc(ing)RNAs to the "shock and kill―strategy for HIV-1 cure. Molecular Therapy - Nucleic Acids, 2021, 23, 1272-1280.	2.3	17
3	Single cell analysis of <i>M. tuberculosis</i> phenotype and macrophage lineages in the infected lung. Journal of Experimental Medicine, 2021, 218, .	4.2	75
4	The Tuberculosis Drug Accelerator at year 10: what have we learned?. Nature Medicine, 2021, 27, 1333-1337.	15.2	32
5	In Vitro Miniaturized Tuberculosis Spheroid Model. Biomedicines, 2021, 9, 1209.	1.4	4
6	Nutrition, Inflammation, and the Gut Microbiota among Outpatients with Active Tuberculosis Disease in India. American Journal of Tropical Medicine and Hygiene, 2021, , .	0.6	1
7	Nutrition and the Gut Microbiota in 10- to 18-Month-Old Children Living in Urban Slums of Mumbai, India. MSphere, 2020, 5, .	1.3	20
8	Nutritional Status and Measles Antibody Titer in Children Living in Urban Slums of Mumbai. Current Developments in Nutrition, 2020, 4, nzaa068_009.	0.1	0
9	TZM-gfp cells: a tractable fluorescent tool for analysis of rare and early HIV-1 infection. Scientific Reports, 2020, 10, 19900.	1.6	3
10	Dual RNA-Sequencing of Mycobacterium tuberculosis-Infected Cells from a Murine Infection Model. STAR Protocols, 2020, 1, 100123.	0.5	9
11	Mycobacterium tuberculosis. , 2020, , 127-138.		5
12	Dual RNA-Seq of Mtb-Infected Macrophages InÂVivo Reveals Ontologically Distinct Host-Pathogen Interactions. Cell Reports, 2020, 30, 335-350.e4.	2.9	146
13	Nutritional assessment among adult patients with suspected or confirmed active tuberculosis disease in rural India. PLoS ONE, 2020, 15, e0233306.	1.1	6
14	Tuberculosis Progression Does Not Necessarily Equate with a Failure of Immune Control. Microorganisms, 2019, 7, 185.	1.6	0
15	Immunometabolism at the interface between macrophages and pathogens. Nature Reviews Immunology, 2019, 19, 291-304.	10.6	285
16	Cellular <scp>M</scp> icrobiology: The metabolic interface between host cell and pathogen. Cellular Microbiology, 2019, 21, e13075.	1.1	3
17	Triggering MSR1 promotes JNKâ€mediated inflammation in ILâ€4â€activated macrophages. EMBO Journal, 2019, 38, .	3.5	78
18	Inhibition of the IncRNA SAF drives activation of apoptotic effector caspases in HIV-1–infected human macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7431-7438.	3.3	55

#	Article	IF	CITATIONS
19	<i>Mycobacterium tuberculosis</i> : Bacterial Fitness within the Host Macrophage. Microbiology Spectrum, 2019, 7, .	1.2	64
20	A novel, sensitive dual-indicator cell line for detection and quantification of inducible, replication-competent latent HIV-1 from reservoir cells. Scientific Reports, 2019, 9, 19325.	1.6	1
21	Exploitation of Synthetic mRNA To Drive Immune Effector Cell Recruitment and Functional Reprogramming In Vivo. Journal of Immunology, 2019, 202, 608-617.	0.4	9
22	Interleukin-2-Inducible T-Cell Kinase Deficiency Impairs Early Pulmonary Protection Against Mycobacterium tuberculosis Infection. Frontiers in Immunology, 2019, 10, 3103.	2.2	14
23	The genetic requirements of fatty acid import by Mycobacterium tuberculosis within macrophages. ELife, 2019, 8, .	2.8	56
24	Growth of <i>Mycobacterium tuberculosis</i> in vivo segregates with host macrophage metabolism and ontogeny. Journal of Experimental Medicine, 2018, 215, 1135-1152.	4.2	421
25	Alveolar T-helper 17 responses to streptococcus pneumoniae are preserved in ART-untreated and treated HIV-infected Malawian adults. Journal of Infection, 2018, 76, 168-176.	1.7	2
26	Matrix metalloproteinase inhibitors enhance the efficacy of frontline drugs against Mycobacterium tuberculosis. PLoS Pathogens, 2018, 14, e1006974.	2.1	50
27	Enhanced Permeability and Retention-like Extravasation of Nanoparticles from the Vasculature into Tuberculosis Granulomas in Zebrafish and Mouse Models. ACS Nano, 2018, 12, 8646-8661.	7.3	89
28	The Deconstructed Granuloma: A Complex High-Throughput Drug Screening Platform for the Discovery of Host-Directed Therapeutics Against Tuberculosis. Frontiers in Cellular and Infection Microbiology, 2018, 8, 275.	1.8	24
29	Flow Cytometric Quantification of Fatty Acid Uptake by Mycobacterium tuberculosis in Macrophages. Bio-protocol, 2018, 8, .	0.2	7
30	Diversity breeds tolerance. Nature, 2017, 546, 44-45.	13.7	1
31	Novel protein acetyltransferase, Rv2170, modulates carbon and energy metabolism in Mycobacterium tuberculosis. Scientific Reports, 2017, 7, 72.	1.6	16
32	Protective immunity against tuberculosis: what does it look like and how do we find it?. Current Opinion in Immunology, 2017, 48, 44-50.	2.4	28
33	2-N-Arylthiazole inhibitors of Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3987-3991.	1.0	4
34	Growing and Handling of Mycobacterium tuberculosis for Macrophage Infection Assays. Methods in Molecular Biology, 2017, 1519, 325-331.	0.4	10
35	Mycobacterium tuberculosis: Readouts of Bacterial Fitness and the Environment Within the Phagosome. Methods in Molecular Biology, 2017, 1519, 333-347.	0.4	13
36	HIV-associated disruption of lung cytokine networks is incompletely restored in asymptomatic HIV-infected Malawian adults on antiretroviral therapy. ERJ Open Research, 2017, 3, 00097-2017.	1.1	7

#	Article	IF	CITATIONS
37	Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. ELife, 2017, 6, .	2.8	137
38	Functional Analysis of Phagocyte Activity in Whole Blood from HIV/Tuberculosis-Infected Individuals Using a Novel Flow Cytometry-Based Assay. Frontiers in Immunology, 2017, 8, 1222.	2.2	14
39	Host transcriptional responses following ex vivo re-challenge with Mycobacterium tuberculosis vary with disease status. PLoS ONE, 2017, 12, e0185640.	1.1	6
40	Mycobacterium tuberculosis arrests host cycle at the G1/S transition to establish long term infection. PLoS Pathogens, 2017, 13, e1006389.	2.1	35
41	The ins and outs of the <i>Mycobacterium tuberculosis</i> -containing vacuole. Cellular Microbiology, 2016, 18, 1065-1069.	1.1	25
42	The Minimal Unit of Infection: <i>Mycobacterium tuberculosis</i> in the Macrophage. Microbiology Spectrum, 2016, 4, .	1.2	35
43	Immune activation of the host cell induces drug tolerance in <i>Mycobacterium tuberculosis</i> both in vitro and in vivo. Journal of Experimental Medicine, 2016, 213, 809-825.	4.2	169
44	MARCO variants are associated with phagocytosis, pulmonary tuberculosis susceptibility and Beijing lineage. Genes and Immunity, 2016, 17, 419-425.	2.2	41
45	Heterogeneous loss of HIV transcription and proviral DNA from 8E5/LAV lymphoblastic leukemia cells revealed by RNA FISH:FLOW analyses. Retrovirology, 2016, 13, 55.	0.9	18
46	Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway. Wellcome Open Research, 2016, 1, 18.	0.9	26
47	Lesion-Specific Immune Response in Granulomas of Patients with Pulmonary Tuberculosis: A Pilot Study. PLoS ONE, 2015, 10, e0132249.	1.1	83
48	Chronic Household Air Pollution Exposure Is Associated with Impaired Alveolar Macrophage Function in Malawian Non-Smokers. PLoS ONE, 2015, 10, e0138762.	1.1	13
49	Detection and quantification of microbial manipulation of phagosomal function. Methods in Cell Biology, 2015, 126, 305-329.	0.5	3
50	Transâ€species communication in the <i><scp>M</scp>ycobacterium tuberculosisâ€</i> infected macrophage. Immunological Reviews, 2015, 264, 233-248.	2.8	30
51	Novel Inhibitors of Cholesterol Degradation in Mycobacterium tuberculosis Reveal How the Bacterium's Metabolism Is Constrained by the Intracellular Environment. PLoS Pathogens, 2015, 11, e1004679.	2.1	245
52	The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. Journal of Cell Biology, 2015, 211, 359-372.	2.3	49
53	Household Air Pollution Causes Dose-Dependent Inflammation and Altered Phagocytosis in Human Macrophages. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 584-593.	1.4	90
54	Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. ELife, 2015, 4, .	2.8	71

#	Article	IF	CITATIONS
55	Signaling for Phagocytosis. , 2014, , 193-P2.		Ο
56	Legionella pneumophila, a Pathogen of Amoebae and Macrophages. , 2014, , 393-403.		0
57	The Role of Phagocytic Cells during Shigella Invasion of the Colonic Mucosa. , 2014, , 405-418.		Ο
58	Small alveolar macrophages are infected preferentially by HIV and exhibit impaired phagocytic function. Mucosal Immunology, 2014, 7, 1116-1126.	2.7	168
59	Exploitation of Mycobacterium tuberculosis Reporter Strains to Probe the Impact of Vaccination at Sites of Infection. PLoS Pathogens, 2014, 10, e1004394.	2.1	78
60	The Sculpting of the <i>Mycobacterium tuberculosis</i> Genome by Host Cell–Derived Pressures. Microbiology Spectrum, 2014, 2, .	1.2	3
61	Asymptomatic HIV-infected Individuals on Antiretroviral Therapy Exhibit Impaired Lung CD4 ⁺ T-Cell Responses to Mycobacteria. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 938-947.	2.5	48
62	Dynamic Quantitative Assays of Phagosomal Function. Current Protocols in Immunology, 2013, 102, 14.34.1-14.34.14.	3.6	25
63	Trp'ing Tuberculosis. Cell, 2013, 155, 1209-1210.	13.5	8
64	Perspective: Graduation time. Nature, 2013, 502, S7-S7.	13.7	4
65	Infection of macrophages with <i>Mycobacterium tuberculosis</i> induces global modifications to phagosomal function. Cellular Microbiology, 2013, 15, 843-859.	1.1	162
66	The evolutionary pressures that have molded Mycobacterium tuberculosis into an infectious adjuvant. Current Opinion in Microbiology, 2013, 16, 78-84.	2.3	37
67	Intracellular Mycobacterium tuberculosis Exploits Host-derived Fatty Acids to Limit Metabolic Stress. Journal of Biological Chemistry, 2013, 288, 6788-6800.	1.6	352
68	Mycobacterium tuberculosis Responds to Chloride and pH as Synergistic Cues to the Immune Status of its Host Cell. PLoS Pathogens, 2013, 9, e1003282.	2.1	131
69	Mycobacterial Trehalose Dimycolate Reprograms Macrophage Global Gene Expression and Activates Matrix Metalloproteinases. Infection and Immunity, 2013, 81, 764-776.	1.0	39
70	Defects in neutrophil granule mobilization and bactericidal activity in familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) syndrome caused by STXBP2/Munc18-2 mutations. Blood, 2013, 122, 109-111.	0.6	49
71	Linking the Transcriptional Profiles and the Physiological States of Mycobacterium tuberculosis during an Extended Intracellular Infection. PLoS Pathogens, 2012, 8, e1002769.	2.1	241
72	The Galvanizing of Mycobacterium tuberculosis: An Antimicrobial Mechanism. Cell Host and Microbe, 2011, 10, 181-183.	5.1	6

#	Article	IF	CITATIONS
73	Quantification of Mycobacterium avium subsp. paratuberculosis (MAP) survival in monocyte-derived macrophages. Veterinary Immunology and Immunopathology, 2011, 139, 73-78.	0.5	6
74	<i>aprABC</i> : a <i>Mycobacterium tuberculosis</i> complexâ€specific locus that modulates pHâ€driven adaptation to the macrophage phagosome. Molecular Microbiology, 2011, 80, 678-694.	1.2	176
75	<i>Mycobacterium tuberculosis</i> and the intimate discourse of a chronic infection. Immunological Reviews, 2011, 240, 252-268.	2.8	240
76	Pathway Profiling in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2011, 286, 43668-43678.	1.6	89
77	Equine bronchial epithelial cells differentiate into ciliated and mucus producing cells in vitro. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 102-106.	0.7	15
78	Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Molecular Medicine, 2010, 2, 258-274.	3.3	417
79	Development of a novel, cellâ€based chemical screen to identify inhibitors of intraphagosomal lipolysis in macrophages. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2010, 77A, 751-760.	1.1	11
80	Induction of ER Stress in Macrophages of Tuberculosis Granulomas. PLoS ONE, 2010, 5, e12772.	1.1	127
81	Fibrinogen Regulates the Cytotoxicity of Mycobacterial Trehalose Dimycolate but Is Not Required for Cell Recruitment, Cytokine Response, or Control of Mycobacterial Infection. Infection and Immunity, 2010, 78, 1004-1011.	1.0	18
82	Functional Genetic Diversity among Mycobacterium tuberculosis Complex Clinical Isolates: Delineation of Conserved Core and Lineage-Specific Transcriptomes during Intracellular Survival. PLoS Pathogens, 2010, 6, e1000988.	2.1	228
83	Tuberculosis: What We Don't Know Can, and Does, Hurt Us. Science, 2010, 328, 852-856.	6.0	430
84	Mycobacterium tuberculosis Wears What It Eats. Cell Host and Microbe, 2010, 8, 68-76.	5.1	166
85	MARCO, TLR2, and CD14 Are Required for Macrophage Cytokine Responses to Mycobacterial Trehalose Dimycolate and Mycobacterium tuberculosis. PLoS Pathogens, 2009, 5, e1000474.	2.1	256
86	Decreased outer membrane permeability protects mycobacteria from killing by ubiquitinâ€derived peptides. Molecular Microbiology, 2009, 73, 844-857.	1.2	69
87	Foamy macrophages and the progression of the human tuberculosis granuloma. Nature Immunology, 2009, 10, 943-948.	7.0	673
88	The macrophage marches on its phagosome: dynamic assays of phagosome function. Nature Reviews Immunology, 2009, 9, 594-600.	10.6	168
89	Intraphagosomal Measurement of the Magnitude and Duration of the Oxidative Burst. Traffic, 2009, 10, 372-378.	1.3	84
90	Transcriptional responses of Mycobacterium tuberculosis to lung surfactant. Microbial Pathogenesis, 2009, 46, 185-193.	1.3	38

6

#	Article	IF	CITATIONS
91	Infection by Tubercular Mycobacteria Is Spread by Nonlytic Ejection from Their Amoeba Hosts. Science, 2009, 323, 1729-1733.	6.0	203
92	Edaxadiene: A New Bioactive Diterpene from Mycobacterium tuberculosis. Journal of the American Chemical Society, 2009, 131, 17526-17527.	6.6	55
93	Monitoring the Granulomal Micro-environment in a Monkey Model of Tuberculosis Using a Novel Fluorescence Bronchoscope. Biophysical Journal, 2009, 96, 297a.	0.2	Ο
94	Recording Phagosome Maturation Through the Real-Time, Spectrofluorometric Measurement of Hydrolytic Activities. Methods in Molecular Biology, 2009, 531, 157-171.	0.4	24
95	Intraphagosomal measurement of the magnitude and duration of the oxidative burst Traffic, 2009, 10, 372-8.	1.3	48
96	Recombinase-based reporter system and antisense technology to study gene expression and essentiality in hypoxic nonreplicating mycobacteria. FEMS Microbiology Letters, 2008, 284, 68-75.	0.7	10
97	Association between sputum smear status and local immune responses at the site of disease in HIV-infected patients with pulmonary tuberculosis. Tuberculosis, 2008, 88, 58-63.	0.8	13
98	Peripheral cell wall lipids of Mycobacterium tuberculosis are inhibitory to surfactant function. Tuberculosis, 2008, 88, 178-186.	0.8	23
99	Staphylococcus and the Healing Power of Pus. Cell Host and Microbe, 2008, 3, 115-116.	5.1	14
100	Genetic Toggling of Alkaline Phosphatase Folding Reveals Signal Peptides for All Major Modes of Transport across the Inner Membrane of Bacteria. Journal of Biological Chemistry, 2008, 283, 35223-35235.	1.6	43
101	Real-Time Spectrofluorometric Assays for the Lumenal Environment of the Maturing Phagosome. Methods in Molecular Biology, 2008, 445, 311-325.	0.4	63
102	Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6031-6036.	3.3	305
103	Ubiquitin Trafficking to the Lysosome: Keeping the House Tidy and Getting Rid of Unwanted Guests. Autophagy, 2007, 3, 399-401.	4.3	12
104	Mycobacterium tuberculosis Invasion of Macrophages: Linking Bacterial Gene Expression to Environmental Cues. Cell Host and Microbe, 2007, 2, 352-364.	5.1	344
105	Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis bacillus calmette guérin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. I. PIMs and Iyso-PIMs. Journal of the American Society for Mass Spectrometry, 2007, 18, 466-478.	1.2	48
106	Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis bacillus calmette gúerin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. II. Monoacyl- and diacyl-PIMs. Journal of the American Society for Mass Spectrometry, 2007, 18, 479-492.	1.2	52
107	New ways to arrest phagosome maturation. Nature Cell Biology, 2007, 9, 357-359.	4.6	21
108	Toll-like receptors and phagosome maturation. Nature Immunology, 2007, 8, 217-217.	7.0	24

#	Article	IF	CITATIONS
109	Who puts the tubercle in tuberculosis?. Nature Reviews Microbiology, 2007, 5, 39-47.	13.6	540
110	TLR signalling and phagosome maturation: an alternative viewpoint. Cellular Microbiology, 2007, 9, 849-850.	1.1	20
111	Lysosomal ubiquitin and the demise of Mycobacterium tuberculosis. Cellular Microbiology, 2007, 9, 2768-2774.	1.1	29
112	<i>Mycobacterium tuberculosis</i> and the environment within the phagosome. Immunological Reviews, 2007, 219, 37-54.	2.8	314
113	Macrophage Activation Downregulates the Degradative Capacity of the Phagosome. Traffic, 2007, 8, 241-250.	1.3	119
114	Alveolar macrophages from HIV-infected patients with pulmonary tuberculosis retain the capacity to respond to stimulation by lipopolysaccharide. Microbes and Infection, 2007, 9, 1053-1060.	1.0	10
115	M. tuberculosis Rv2252 encodes a diacylglycerol kinase involved in the biosynthesis of phosphatidylinositol mannosides (PIMs). Molecular Microbiology, 2006, 60, 1152-1163.	1.2	17
116	Adherent and Invasive Escherichia coli Is Associated with Granulomatous Colitis in Boxer Dogs. Infection and Immunity, 2006, 74, 4778-4792.	1.0	235
117	Structural characterization of cardiolipin by tandem quadrupole and multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. Journal of the American Society for Mass Spectrometry, 2005, 16, 491-504.	1.2	119
118	Kinetics of phosphatidylinositol-3-phosphate acquisition differ between IgG bead-containing phagosomes and Mycobacterium tuberculosis-containing phagosomes. Cellular Microbiology, 2005, 7, 1627-1634.	1.1	32
119	The Kinetics of Phagosome Maturation as a Function of Phagosome/Lysosome Fusion and Acquisition of Hydrolytic Activity. Traffic, 2005, 6, 413-420.	1.3	195
120	Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: Characterization of a new model of the granulomatous response to mycobacterial components. Tuberculosis, 2005, 85, 159-176.	0.8	63
121	In Vivo Activity of Released Cell Wall Lipids of <i>Mycobacterium bovis</i> Bacillus Calmette-GueÌrin Is Due Principally to Trehalose Mycolates. Journal of Immunology, 2005, 174, 5007-5015.	0.4	173
122	Elemental Analysis of <i>Mycobacterium avium</i> -, <i>Mycobacterium tuberculosis</i> -, and <i>Mycobacterium smegmatis</i> -Containing Phagosomes Indicates Pathogen-Induced Microenvironments within the Host Cell's Endosomal System. Journal of Immunology, 2005, 174, 1491-1500.	0.4	389
123	Phagosome Maturation Proceeds Independently of Stimulation of Toll-like Receptors 2 and 4. Immunity, 2005, 23, 409-417.	6.6	192
124	<i>Mycobacterium tuberculosis</i> Resides in Nonacidified Vacuoles in Endocytically Competent Alveolar Macrophages from Patients with Tuberculosis and HIV Infection. Journal of Immunology, 2004, 172, 4592-4598.	0.4	116
125	Vesicle Size Influences the Trafficking, Processing, and Presentation of Antigens in Lipid Vesicles. Journal of Immunology, 2004, 173, 6143-6150.	0.4	121
126	The Mycobacterium tuberculosis ino1 gene is essential for growth and virulence. Molecular Microbiology, 2004, 51, 1003-1014.	1.2	85

#	Article	IF	CITATIONS
127	Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13642-13647.	3.3	291
128	Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Molecular Microbiology, 2003, 48, 875-888.	1.2	99
129	Phagosomes, fatty acids and tuberculosis. Nature Cell Biology, 2003, 5, 776-778.	4.6	84
130	Biochemical and Structural Studies of Malate Synthase fromMycobacterium tuberculosis. Journal of Biological Chemistry, 2003, 278, 1735-1743.	1.6	132
131	Highlighting the Parallels between Human and Bovine Tuberculosis. Journal of Veterinary Medical Education, 2003, 30, 140-142.	0.4	8
132	pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology (United Kingdom), 2003, 149, 1829-1835.	0.7	85
133	Expression of the filarial nematode phosphorylcholine-containing glycoprotein, ES62, is stage specific. Parasitology, 2002, 125, 155-164.	0.7	37
134	Mycobacterium and the coat of many lipids. Journal of Cell Biology, 2002, 158, 421-426.	2.3	151
135	Association of a macrophage galactoside-binding protein with Mycobacterium-containing phagosomes. Cellular Microbiology, 2002, 4, 167-176.	1.1	74
136	Mycobacterial persistence: adaptation to a changing environment. Trends in Microbiology, 2001, 9, 597-605.	3.5	200
137	TB comes to a sticky beginning. Nature Medicine, 2001, 7, 894-895.	15.2	15
138	Mycobacterium tuberculosis: here today, and here tomorrow. Nature Reviews Molecular Cell Biology, 2001, 2, 569-578.	16.1	662
139	Mycobacterial surface moieties are released from infected macrophages by a constitutive exocytic event. European Journal of Cell Biology, 2001, 80, 31-40.	1.6	114
140	Analysis of Mycobacterium-Infected Macrophages by Immunoelectron Microscopy and Cell Fractionation. , 2001, 54, 281-293.		3
141	Leprosy research in the post-genome era. Leprosy Review, 2001, 72, 8-22.	0.1	16
142	Trafficking and Release of Mycobacterial Lipids from Infected Macrophages. Traffic, 2000, 1, 235-247.	1.3	316
143	Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis. Nature Structural Biology, 2000, 7, 663-668.	9.7	211
144	Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature, 2000, 406, 735-738.	13.7	1,251

#	Article	IF	CITATIONS
145	Acylation-dependent Protein Export inLeishmania. Journal of Biological Chemistry, 2000, 275, 11017-11025.	1.6	146
146	Interaction of <i>Mycobacterium avium</i> -Containing Phagosomes with the Antigen Presentation Pathway. Journal of Immunology, 2000, 165, 6073-6080.	0.4	54
147	Sequence Requirements for Trafficking of the CRAM Transmembrane Protein to the Flagellar Pocket of African Trypanosomes. Molecular and Cellular Biology, 2000, 20, 5149-5163.	1.1	12
148	Identification of Mycobacterial Surface Proteins Released into Subcellular Compartments of Infected Macrophages. Infection and Immunity, 2000, 68, 6997-7002.	1.0	146
149	Cell Biological Approaches to the Study of Intracellular Pathogens: Motility, Invasion, Secretion and Vesicular Trafficking. , 2000, , 213-254.		1
150	Direct delivery of procathepsin D to phagosomes: Implications for phagosome biogenesis and parasitism by Mycobacterium. European Journal of Cell Biology, 1999, 78, 739-748.	1.6	67
151	Cysteine protease inhibitors as chemotherapy: Lessons from a parasite target. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11015-11022.	3.3	178
152	Characterization of Activity and Expression of Isocitrate Lyase in <i>Mycobacterium avium</i> and <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 1999, 181, 7161-7167.	1.0	241
153	What does `inhibition of phagosome–lysosome fusion' really mean?. Trends in Microbiology, 1998, 6, 212-214.	3.5	14
154	Mycobacterium bovis bacille Calmette-Guerin strains secreting listeriolysin of Listeria monocytogenes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5299-5304.	3.3	180
155	Golgi GDP-mannose Uptake Requires Leishmania LPG2. Journal of Biological Chemistry, 1997, 272, 3799-3805.	1.6	141
156	Why intracellular parasitism need not be a degrading experience forMycobacterium. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 1303-1310.	1.8	46
157	The interaction betweenMycobacterium and the macrophage analyzed by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis, 1997, 18, 2558-2565.	1.3	83
158	On the molecular mechanism of chloroquine's antimalarial action Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11865-11870.	3.3	454
159	Chapter 15: Immunoelectron Microscopy of Endosomal Trafficking in Macrophages Infected with Microbial Pathogens. Methods in Cell Biology, 1995, 45, 277-288.	0.5	19
160	Mycobacterium and Leishmania: stowaways in the endosomal network. Trends in Cell Biology, 1995, 5, 125-128.	3.6	78
161	Chapter 14: Isolation and Characterization of Pathogen-Containing Phagosomes. Methods in Cell Biology, 1995, 45, 261-276.	0.5	47
162	Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science, 1994, 263, 678-681.	6.0	1,258

1:03Structually distinct genes for the surface proteose of Leichmania modean are developmentally regulated. Molecular and Biochemical Parastology, 1993, 57, 31-45.0.5521:04Chibidi facticulat contrains a transcribed leichmania surface proteinase (gp63) gene homologue. Molecular and Biochemical Parastology, 1993, 57, 47-54.0.5521:05Disseminated tuberculases in interferon gamma gene-discupted mice. Journal of Experimental or the lumited states of America, 1993, 90, 1192-1192, 178, 2141 2247.1.9001:06Effective immunization against cutaneous leichmaniass with recombinant bacille Calmette-Guerin or the lumited states of America, 1993, 90, 1192-11477.3.91.101:07Characterization of the intervalization of hacillus Calmette-Guerin by human blatider tumor cells. Journal of Chinad Invastigation, 1993, 19, 199-76.3.91.101:08The Interaction of the intervalization of bacillus Calmette-Guerin by human blatider tumor cells. Journal of Chinad Invastigation, 1993, 19, 199-76.3.91.001:09Parastology, 1990, 40, 155-172.1.42.781:10Chenes encoding the major surface glycoprotein in Leishmania are tandenly leiked at a single (1993, 32, 271-28).0.51.321:11Chenes encoding the major surface glycoprotein in Leishmania is expressed but differentially processed and (1993, 32, 271-28).0.51.361:12Ibelentaria and the macrophage: a marriage of inconventience. Frends in Immunology, 1989, 10, 328-333.7.51.161:13Leishmania and the macrophage: a marriage of inconventience. Frends in Immunology, 1989, 10, 328-333.7.51.361:14 <th>#</th> <th>Article</th> <th>IF</th> <th>CITATIONS</th>	#	Article	IF	CITATIONS
Molecular and Biochemical Parasitology, 1993, 57, 47:54. 0.03 52 165 Disseminated tuberculosis in interferon gamma gene disrupted mice. Journal of Experimental 4.2 1.800 166 Refective Immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guerin 3.3 211 166 Effective Immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guerin 3.3 211 167 Characterization of the internalization of bacillus Calmette-Courin by human bladder tumor cells. 3.9 116 168 The Internaction of Leishmania Species with Macrophages. Advances in Parasitology, 1992, 31, 175-254. 1.4 278 169 Leishmania mexicana mexicana gp63 is a site-specific neutral endopeptidase. Molecular and Biochemical 0.5 33 170 Leishmania and the macrophage. Trends in Immunology, 1990, 11, 74-75. 7.5 6 171 chromosana locus and accountitutively transcribed. Molecular and Biochemical Parasitology, 1982, 22, 221-283. 0.3 132 172 The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and locular and Biochemical Parasitology, 1989, 32, 221-283. 0.3 132 172 The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and locular and Biochemical P	163	Structually distinct genes for the surface protease of Leishmania mexicana are developmentally regulated. Molecular and Biochemical Parasitology, 1993, 57, 31-45.	0.5	79
100 Medicine, 1993, 178, 2243-2247. 120 1600 106 Effective Immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guerin expressing the Leishmania surface proteolinase gn63, recoverings of the National Academy of Sciences of the United States of America, 1993, 90, 11473-11477. 3.3 211 107 Characterization of the internalization of bacillus Calmette-Guerin by human bladder tumor cells 3.9 116 108 The Interaction of Leishmania Species with Macrophages. Advances in Parasitology, 1992, 31, 175-254. 1.4 278 109 Leishmania mexicana mexicana gp63 is a site-specific neutral endopeptidase. Molecular and Biochemical Parasitology, 1990, 40, 163-172. 0.5 33 108 The Interaction of Leishmania Surface proteose (gp63) of Leishmania are tandemily linked at a single chromosomal locus and are constitutively transcribed. Molecular and Biochemical Parasitology, 1989, 32, 221-283. 0.5 156 107 Leishmania and the macrophage: a mariage of inconvenience. Trends in Immunology, 1989, 10, 328-333. 7.5 118 117 Leishmania and the macrophage: a mariage of inconvenience. Trends in Immunology, 1989, 10, 328-333. 7.5 118 117 Leishmania and the macrophage: a mariage of inconvenience. Trends in Immunology, 1989, 10, 328-333. 7.5 118 117 Leishmania and the macrophage: a mariage of	164	Crithidia fasciculata contains a transcribed leishmanial surface proteinase (gp63) gene homologue. Molecular and Biochemical Parasitology, 1993, 57, 47-54.	0.5	52
166 expressing the Leikhmania surface proteinase gp53. Proceedings of the National Academy of Sciences 3.3 211 167 charactorization of the Internalization of bacillus Calmette Guerin by human bladder tumor cells. 3.9 116 168 The Interactorization of Leikhmania Species with Macrophages. Advances in Parasitology, 1992, 31, 175-254. 1.4 278 169 Leikhmania mexicana mexicana gp63 is a site-specific neutral endopeptidase. Molecular and Biochemical 0.5 33 170 Leikhmania and the macrophage. Trends in Immunology, 1990, 11, 74-75. 7.5 6 171 chemosonal locus and are constitutively transcribed. Molecular and Biochemical Parasitology, 1980, 22, 271-283. 0.5 132 172 The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Molecular and Biochemical Parasitology, 1989, 10, 328-333. 7.6 118 174 Complement receptor type 3 (CR3) binds to an Arg-Cly-Asp-containing region of the major surface glycoprotein gp63 is the predominant C3-acceptor site on Leishmania 0.2 238 175 Subpellicular and flagellar microtubules of Trypanosoma brucel brucei contain the same approx surface glycoprotein gp63 is the predominant C3-acceptor site on Leishmania 0.2 103 175 Subpellicular and flagellar microtubules of Trypanosoma brucel	165	Disseminated tuberculosis in interferon gamma gene-disrupted mice Journal of Experimental Medicine, 1993, 178, 2243-2247.	4.2	1,896
107 Journal of Clinical Investigation, 1993, 91, 69-76. 5-9 110 108 The Interaction of Leishmania Species with Macrophages. Advances in Parasitology, 1992, 31, 175-254. 1.4 278 109 Leishmania mexicana mexicana gp63 is a site-specific neutral endopeptidase. Molecular and Biochemical 0.5 33 109 Leishmania and the macrophage. Trends in Immunology, 1990, 11, 74-75. 7.5 6 111 Cenes encoding the major surface glycoprotein in Leishmania are tandemly linked at a single chromosomal locus and are constitutively transcribed. Molecular and Biochemical Parasitology, 1932, 271-283. 0.5 132 117 Ihe promastigote surface glycoprotein in Leishmania is expressed but differentially processed and localized in the amastigote stage. Molecular and Biochemical Parasitology, 1989, 37, 263-273. 0.5 156 117 Leishmania and the macrophage: a marriage of Inconvenience. Trends in Immunology, 1989, 10, 328-333. 7.5 118 117 Complement receptor type 3 (CR3) binds to an Arg-Oly-Asp-containing region of the major surface glycoprotein, gp63, of Leishmania promastigotesJournal of Experimental Medicine, 1988, 168, 279-292. 4.2 238 117 Subpellicular and flagellar microtubules of Trypanosoma brucel brucel contain the same alpha tubulin isoformsJournal of Cell Biology, 1967, 104, 431-438. 108 108 117 The	166	expressing the Leishmania surface proteinase gp63 Proceedings of the National Academy of Sciences	3.3	211
169 Leishmania mexicana mexicana gep63 is a site-specific neutral endopeptidase. Molecular and Biochemical 0.5 33 170 Leishmania and the macrophage. Trends in Immunology, 1990, 11, 74-75. 7.5 6 171 Cenes encoding the major surface glycoprotein in Leishmania are tandemly linked at a single chromosomal locus and are constitutively transcribed. Molecular and Biochemical Parasitology, 1980, 32, 271 283. 0.5 132 172 The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Molecular and Biochemical Parasitology, 1989, 37, 263-273. 0.5 156 172 Leishmania and the macrophage: a marriage of inconvenience. Trends in Immunology, 1989, 10, 328-333. 7.5 118 174 Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes Journal of Experimental Medicine, 1988, 168, 279-292. 4.2 238 175 Subpellicular and flagellar microtubules of Typanosoma brucel brucei contain the same alpha-tubuln isoforms Journal of Cell Biology, 1987, 104, 431-438. 108 176 The ancrophage-attachment glycoprotein gp63 is the predominant C3-acceptor site on Leishmania 0.2 103 177 Mycobacterium and the Seduction of the Macrophage, 0,, 371-388. 7 103 178 The Minim	167		3.9	116
169 Parasitology, 1990, 40, 163-172. 0.5 33 170 Leishmania and the macrophage. Trends in Immunology, 1990, 11, 74-75. 7.5 6 171 Chromosomal locus and are constitutively transcribed. Molecular and Biochemical Parasitology, 1989, 32, 271-283. 0.5 132 172 The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Molecular and Biochemical Parasitology, 1989, 37, 263-273. 0.5 156 173 Leishmania and the macrophage: a marriage of inconvenience. Trends in Immunology, 1989, 10, 328-333. 7.5 118 174 Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes Journal of Experimental Medicine, 1988, 168, 279-292. 4.2 238 175 Subpellicular and flagellar microtubules of Trypanosoma brucei brucei contain the same alpha-tubulin isoforms. Journal of Cell Biology, 1987, 104, 431-438. 0.2 103 176 The macrophage-attachment glycoprotein gp63 is the predominant C3-acceptor site on Leishmania 0.2 103 177 Mycobacterium and the Seduction of the Macrophage., 0, 371-388. 7 103 178 The Minimal Unit of Infection: <i>Mycobacterium tuberculosis</i> i>in the Macrophage., 0, 635-652. 3	168	The Interaction of Leishmania Species with Macrophages. Advances in Parasitology, 1992, 31, 175-254.	1.4	278
171Cenes encoding the major surface glycoprotein in Leishmania are tandemly linked at a single chromosomal locus and are constitutively transcribed. Molecular and Blochemical Parasitology,0.5132172The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Molecular and Blochemical Parasitology, 1989, 37, 263-273.0.5156173Leishmania and the macrophage: a marriage of inconvenience. Trends in Immunology, 1989, 10, 328-333.7.5118174Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes. Journal of Experimental Medicine, 1988, 168, 279-292.4.2238175Subpellicular and flagellar microtubules of Trypanosoma brucei brucei contain the same alpha-tubulin isoforms. Journal of Cell Biology, 1987, 104, 431-438.2.3108176The macrophage-attachment glycoprotein gp63 is the predominant C3-acceptor site on Leishmania mexicana promastigotes. FEBS Journal, 1987, 164, 213-221.7178The Minimal Unit of Infection: <i>Mycobacterium tuberculosis37-1388.7</i>	169	Leishmania mexicana mexicana gp63 is a site-specific neutral endopeptidase. Molecular and Biochemical Parasitology, 1990, 40, 163-172.	0.5	33
171 chromosomal locus and are constitutively transcribed. Molecular and Biochemical Parasitology, 1989, 32, 271-283. 0.5 132 172 The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Molecular and Biochemical Parasitology, 1989, 37, 263-273. 0.5 156 173 Leishmania and the macrophage: a marriage of inconvenience. Trends in Immunology, 1989, 10, 328-333. 7.5 118 174 Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes. Journal of Experimental Medicine, 1988, 168, 279-292. 4.2 238 175 Subpellicular and flagellar microtubules of Trypanosoma brucei brucei contain the same alpha-tubulin isoforms. Journal of Cell Biology, 1987, 104, 431-438. 2.3 108 176 The macrophage-attachment glycoprotein gp63 is the predominant C3-acceptor site on Leishmania nexicana promastigotes. FEBS Journal, 1987, 164, 213-221. 0.2 103 177 Mycobacterium and the Seduction of the Macrophage. , 0, , 371-388. 7 3 178 The Minimal Unit of Infection: <i>Mycobacterium tuberculosis 1/2 in the Macrophage. , 0, , 635-652. 3</i>	170	Leishmania and the macrophage. Trends in Immunology, 1990, 11, 74-75.	7.5	6
172 localized in the amastigote stage. Molecular and Biochemical Parasitology, 1989, 37, 263-273. 0.3 138 173 Leishmania and the macrophage: a marriage of inconvenience. Trends in Immunology, 1989, 10, 328-333. 7.5 118 174 Complement receptor type 3 (CR3) binds to an Arg-Cly-Asp-containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes Journal of Experimental Medicine, 1988, 168, 279-292. 4.2 238 175 Subpellicular and flagellar microtubules of Trypanosoma brucei brucei contain the same alpha-tubulin isoforms Journal of Cell Biology, 1987, 104, 431-438. 2.3 108 176 The macrophage-attachment glycoprotein gp63 is the predominant C3-acceptor site on Leishmania mexicana promastigotes. FEBS Journal, 1987, 164, 213-221. 0.2 103 177 Mycobacterium and the Seduction of the Macrophage., 0, , 371-388. 7 178 The Minimal Unit of Infection: <i>Mycobacterium tuberculosis</i> isin the Macrophage., 0, , 635-652. 3	171	chromosomal locus and are constitutively transcribed. Molecular and Biochemical Parasitology,	0.5	132
174 Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes Journal of Experimental Medicine, 1988, 168, 279-292. 4.2 238 175 Subpellicular and flagellar microtubules of Trypanosoma brucei brucei contain the same alpha-tubulin isoforms Journal of Cell Biology, 1987, 104, 431-438. 2.3 108 176 The macrophage-attachment glycoprotein gp63 is the predominant C3-acceptor site on Leishmania mexicana promastigotes. FEBS Journal, 1987, 164, 213-221. 0.2 103 177 Mycobacterium and the Seduction of the Macrophage., 0, , 371-388. 7 178 The Minimal Unit of Infection: <i>Mycobacterium tuberculosis</i> i>i mexicana promastigotes. 3	172	The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Molecular and Biochemical Parasitology, 1989, 37, 263-273.	0.5	156
174 glycoprotein, gp63, of Leishmania promastigotes Journal of Experimental Medicine, 1988, 168, 279-292. 4.2 238 175 Subpellicular and flagellar microtubules of Trypanosoma brucei brucei contain the same alpha-tubulin isoforms Journal of Cell Biology, 1987, 104, 431-438. 2.3 108 176 The macrophage-attachment glycoprotein gp63 is the predominant C3-acceptor site on Leishmania mexicana promastigotes. FEBS Journal, 1987, 164, 213-221. 0.2 103 177 Mycobacterium and the Seduction of the Macrophage. , 0, , 371-388. 7 178 The Minimal Unit of Infection: <i>Mycobacterium tuberculosis</i> is in the Macrophage. , 0, , 635-652. 3	173	Leishmania and the macrophage: a marriage of inconvenience. Trends in Immunology, 1989, 10, 328-333.	7.5	118
175 alpha-tubulin isoforms. Journal of Cell Biology, 1987, 104, 431-438. 2.3 108 176 The macrophage-attachment glycoprotein gp63 is the predominant C3-acceptor site on Leishmania mexicana promastigotes. FEBS Journal, 1987, 164, 213-221. 0.2 103 177 Mycobacterium and the Seduction of the Macrophage. , 0, , 371-388. 7 178 The Minimal Unit of Infection: <i>Mycobacterium tuberculosis</i> i>in the Macrophage. , 0, , 635-652. 3	174		4.2	238
176 mexicana promastigotes. FEBS Journal, 1987, 164, 213-221. 0.2 103 177 Mycobacterium and the Seduction of the Macrophage. , 0, , 371-388. 7 178 The Minimal Unit of Infection: <i>Mycobacterium tuberculosis</i> 3	175		2.3	108
178 The Minimal Unit of Infection: <i>Mycobacterium tuberculosis</i> in the Macrophage., 0,, 635-652. 3	176		0.2	103
	177	Mycobacterium and the Seduction of the Macrophage. , 0, , 371-388.		7
179 Neutrophils Forever $\hat{a} \in [., 0, .]$ 3	178	The Minimal Unit of Infection: <i>Mycobacterium tuberculosis</i> in the Macrophage. , 0, , 635-652.		3
	179	Neutrophils Forever …., 0, , 1-26.		3

180 Membrane Trafficking during Phagosome Formation and Maturation. , 0, , 209-223.

1

0

#	Article	IF	CITATIONS
181	Recognition and Removal of Apoptotic Cells. , 0, , 341-P1.		2
182	Regulation and Antimicrobial Function of Inducible Nitric Oxide Synthase in Phagocytes. , 0, , 367-378.		1
183	The Parasite Point of View: Insights and Questions on the Cell Biology of Trypanosoma and Leishmania Parasite-Phagocyte Interactions. , 0, , 453-462.		3
184	<i>Dictyostelium discoideum</i> : a Model Phagocyte and a Model for Host-Pathogen Interactions. , 0, , 491-P1.		1
185	Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway. Wellcome Open Research, 0, 1, 18.	0.9	30
186	The Multiple Interactions between Salmonella and Phagocytes. , 0, , 379-P1.		0
187	Leukocyte Chemotaxis. , 0, , 183-192.		0
188	Fc Receptors and Phagocytosis. , 0, , 69-92.		0
189	Brucella, a Perfect Trojan Horse in Phagocytes. , 0, , 427-435.		0
190	Phagocyte Interactions with the Intracellular Protozoan Toxoplasma gondii. , 0, , 463-476.		0
191	Macrophages: Microbial Recognition and Response. , 0, , 27-50.		0
192	Acidification of Endosomes and Phagosomes. , 0, , 225-233.		0
193	Novel Anti-Inflammatory and Proresolution Lipid Mediators in Induction and Modulation of Phagocyte Function. , 0, , 265-280.		0
194	Cytokines and Macrophages and Dendritic Cells: Key Modulators of Immune Responses. , 0, , 281-299.		0
195	Chemokines and Phagocyte Trafficking. , 0, , 93-106.		0
196	Macrophage Classical Activation. , 0, , 301-323.		0
197	Intracytosolic Sensing of Pathogens: Nucleic Acid Receptors, NLRs, and the Associated Responses during Infections and Autoinflammatory Diseases. , 0, , 153-169.		0

Dendritic Cells and Their Tissue Microenvironment during Exposure to Pathogens. , 0, , 51-68.

#	Article	IF	CITATIONS
199	Where To Stay inside the Cell: a Homesteader's Guide to Intracellular Parasitism. , 0, , 227-253.		0
200	The Functional Heterogeneity of Activated Macrophages. , 0, , 325-340.		0
201	Phagocytes Are a Source of the Fluid-Phase Pattern Recognition Receptor PTX3: Interplay between Cellular and Humoral Innate Immunity. , 0, , 171-P2.		0
202	Functional Analysis of the Intraphagosomal Environment of the Macrophage: Fluorogenic Reporters and the Transcriptional Responses of Salmonella and Mycobacterium spp , 0, , 249-264.		0
203	The Zebrafish as a Model of Host-Pathogen Interactions. , 0, , 523-P1.		0
204	Interaction of Candida albicans with Phagocytes. , 0, , 437-P1.		0
205	Whole Genome Screens in Macrophages. , 0, , 537-543.		0
206	Actin-Based Motility in Professional Phagocytes. , 0, , 235-248.		0
207	Integrins on Phagocytes. , 0, , 137-152.		0
208	Toll-Like Receptors. , 0, , 107-122.		0
209	The Sculpting of the Mycobacterium tuberculosis Genome by Host Cell-Derived Pressures. , 0, , 727-745.		0