Cedric Vancaeyzeele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7060189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Other nanocomposites of MOFs for supercapacitors. , 2022, , 461-484.		0
2	Ionofibers: Ionically Conductive Textile Fibers for Conformal iâ€Textiles. Advanced Materials Technologies, 2022, 7, .	5.8	6
3	Tailoring Electromechanical Properties of Natural Rubber Vitrimers by Cross-Linkers. Industrial & Engineering Chemistry Research, 2022, 61, 8871-8880.	3.7	5
4	Photopolymerizable Ionogel with Healable Properties Based on Dioxaborolane Vitrimer Chemistry. Gels, 2022, 8, 381.	4.5	5
5	4D smart porous scaffolds based on the polyHIPE architecture and electroactive PEDOT. Journal of Materials Chemistry C, 2021, 9, 12388-12398.	5.5	9
6	Synthesis of magnetic multi walled carbon nanotubes hydrogel nanocomposite based on poly (acrylic) Tj ETQq0 0 Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126350.	0 rgBT /C 4.7	verlock 10 13
7	Electrodeposition of MnO2 on spray-coated nanostructured carbon framework as high performance material for energy storage. Surface and Coatings Technology, 2020, 384, 125310.	4.8	15
8	Fabrication of bicontinuous double networks as thermal and pH stimuli responsive drug carriers for on-demand release. Materials Science and Engineering C, 2020, 109, 110495.	7.3	7
9	Dynamic crosslinked rubbers for a green future: A material perspective. Materials Science and Engineering Reports, 2020, 141, 100561.	31.8	90
10	Multi-stimuli responsive nanogel/hydrogel nanocomposites based on κ-carrageenan for prolonged release of levodopa as model drug. International Journal of Biological Macromolecules, 2020, 153, 180-189.	7.5	42
11	Graphene oxide nanocomposite hydrogel based on poly(acrylic acid) grafted onto salep: an adsorbent for the removal of noxious dyes from water. New Journal of Chemistry, 2019, 43, 3572-3582.	2.8	31
12	Lithium-based oligomer ionic liquid for solvent-free conducting materials. Polymer, 2018, 142, 337-347.	3.8	7
13	Elaboration of bio-epoxy/benzoxazine interpenetrating polymer networks: a composition-to-morphology mapping. Polymer Chemistry, 2018, 9, 472-481.	3.9	18
14	pH-Responsive fluorescent dye-labeled metal-chelating polymer with embedded cadmium telluride quantum dots for controlled drug release of doxorubicin. Reactive and Functional Polymers, 2018, 133, 45-56.	4.1	10
15	Polymeric ionic liquid based interpenetrating polymer network for all-solid self-standing polyelectrolyte material. European Polymer Journal, 2018, 106, 257-265.	5.4	8
16	Symmetric Versus Asymmetric di-Bz Monomer Design. , 2017, , 89-107.		7
17	Nanostructured Thermal Responsive Materials Synthesized by Soft Templating. ACS Applied Materials & Interfaces, 2017, 9, 12706-12718.	8.0	9
18	Nanostructure Changes upon Polymerization of Aqueous and Organic Phases in Organized Mixtures.	3.5	6

CEDRIC VANCAEYZEELE

#	Article	IF	CITATIONS
19	Breaking the symmetry of dibenzoxazines: a paradigm to tailor the design of bio-based thermosets. Green Chemistry, 2016, 18, 3346-3353.	9.0	94
20	Fibrin-based interpenetrating polymer network biomaterials with tunable biodegradability. Polymer, 2015, 62, 19-27.	3.8	18
21	Assemblies of protective anion exchange membrane on air electrode for its efficient operation in aqueous alkaline electrolyte. Journal of Power Sources, 2015, 274, 636-644.	7.8	4
22	Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane. Journal of Power Sources, 2015, 274, 488-495.	7.8	19
23	Microemulsion as the template for synthesis of interpenetrating polymer networks with predefined structure. Polymer, 2013, 54, 4436-4445.	3.8	9
24	Self-standing single lithium ion conductor polymer network with pendant trifluoromethanesulfonylimide groups: Li+ diffusion coefficients from PFGSTE NMR. European Polymer Journal, 2013, 49, 4108-4117.	5.4	39
25	Self-Supported Fibrin-Polyvinyl Alcohol Interpenetrating Polymer Networks: An Easily Handled and Rehydratable Biomaterial. Biomacromolecules, 2013, 14, 3870-3879.	5.4	28
26	Nuclear Magnetic Resonance (NMR) Characterization of a Polymerized Ionic Liquid Electrolyte Material. Materials Research Society Symposia Proceedings, 2012, 1440, 31.	0.1	3
27	Long lifetime in concentrated LiOH aqueous solution of air electrode protected with interpenetrating polymer network membrane. Journal of Power Sources, 2012, 197, 267-275.	7.8	16
28	Labeling of fibronectin by fluorescent and paramagnetic nanoprobes for exploring the extracellular matrix: bioconjugate synthesis optimization and biochemical characterization. Analytical and Bioanalytical Chemistry, 2011, 399, 1653-1663.	3.7	9
29	Fibrin–polyethylene oxide interpenetrating polymer networks: New self-supported biomaterials combining the properties of both protein gel and synthetic polymer. Acta Biomaterialia, 2011, 7, 2418-2427.	8.3	38
30	Immobilization of polyisobutene in semi-interpenetrating polymer network architecture. Polymer, 2010, 51, 5323-5331.	3.8	3
31	Lanthanide-Containing Polymer Nanoparticles for Biological Tagging Applications:  Nonspecific Endocytosis and Cell Adhesion. Journal of the American Chemical Society, 2007, 129, 13653-13660.	13.7	78
32	Synthesis, characterization, and energy transfer studies of dye-labeled poly(butyl methacrylate) latex particles prepared by miniemulsion polymerization. Polymer, 2007, 48, 5839-5849.	3.8	26
33	Polyisobutene/polystyrene interpenetrating polymer networks: Effects of network formation order and composition on the IPN architecture. Polymer, 2006, 47, 2046-2060.	3.8	24
34	Polyisobutene/polycyclohexyl methacrylate interpenetrating polymer networks. Polymer, 2006, 47, 6048-6056.	3.8	12
35	Polyisobutene–poly(methylmethacrylate) interpenetrating polymer networks: synthesis and characterization. Polymer, 2005, 46, 6888-6896.	3.8	36