Hector Martin Crocce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7058978/publications.pdf

Version: 2024-02-01

177 papers

15,354 citations

67 h-index 119 g-index

177 all docs

177 docs citations

times ranked

177

8035 citing authors

#	Article	IF	CITATIONS
1	Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. Physical Review D, 2018, 98, .	4.7	751
2	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models. Astrophysical Journal Letters, 2017, 848, L17.	8.3	656
3	Transients from initial conditions in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2006, 373, 369-381.	4.4	530
4	The Dark Energy Survey: Data Release 1. Astrophysical Journal, Supplement Series, 2018, 239, 18.	7.7	455
5	Renormalized cosmological perturbation theory. Physical Review D, 2006, 73, .	4.7	416
6	SEARCHING FOR DARK MATTER ANNIHILATION IN RECENTLY DISCOVERED MILKY WAY SATELLITES WITH FERMI-LAT. Astrophysical Journal, 2017, 834, 110.	4.5	412
7	Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear. Physical Review D, 2018, 98, .	4.7	412
8	EIGHT ULTRA-FAINT GALAXY CANDIDATES DISCOVERED IN YEAR TWO OF THE DARK ENERGY SURVEY. Astrophysical Journal, 2015, 813, 109.	4.5	405
9	Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing. Physical Review D, 2022, 105, .	4.7	398
10	KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints. Astronomy and Astrophysics, 2021, 646, A140.	5.1	393
11	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera. Astrophysical Journal Letters, 2017, 848, L16.	8.3	392
12	Nonlinear evolution of baryon acoustic oscillations. Physical Review D, 2008, 77, .	4.7	351
13	Memory of initial conditions in gravitational clustering. Physical Review D, 2006, 73, .	4.7	242
14	Cosmology and the bispectrum. Physical Review D, 2006, 74, .	4.7	197
15	Stellar Streams Discovered in the Dark Energy Survey. Astrophysical Journal, 2018, 862, 114.	4.5	193
16	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
17	Simulating the Universe with MICE: the abundance of massive clusters. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1353-1367.	4.4	175
18	redMaGiC: selecting luminous red galaxies from the DES Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1431-1450.	4.4	156

#	Article	IF	Citations
19	The MICE grand challenge lightcone simulation $\hat{a} \in \mathbb{C}$ I. Dark matter clustering. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2987-3000.	4.4	154
20	Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to data calibration. Physical Review D, 2022, 105, .	4.7	151
21	Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 478, 592-610.	4.4	145
22	Multipoint propagators in cosmological gravitational instability. Physical Review D, 2008, 78, .	4.7	144
23	Dark Energy Survey Year 1 results: weak lensing shape catalogues. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1149-1182.	4.4	144
24	The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the configuration-space clustering wedges. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1640-1658.	4.4	143
25	First cosmological results using Type Ia supernovae from the Dark Energy Survey: measurement of the Hubble constant. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2184-2196.	4.4	143
26	Dark Energy Survey Year 1 Results: Cosmological constraints from cluster abundances and weak lensing. Physical Review D, 2020, 102, .	4.7	140
27	Accurate estimators of correlation functions in Fourier space. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3624-3636.	4.4	138
28	The DES Science Verification weak lensing shear catalogues. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2245-2281.	4.4	137
29	Dark Energy Survey Year 1 results: weak lensing mass calibration of redMaPPer galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1352-1378.	4.4	135
30	Dark Energy Survey year 1 results: Constraints on extended cosmological models from galaxy clustering and weak lensing. Physical Review D, 2019, 99, .	4.7	130
31	MEASURING BARYON ACOUSTIC OSCILLATIONS ALONG THE LINE OF SIGHT WITH PHOTOMETRIC REDSHIFTS: THE PAU SURVEY. Astrophysical Journal, 2009, 691, 241-260.	4.5	129
32	THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY. Astronomical Journal, 2015, 150, 172.	4.7	128
33	The MICE Grand Challenge lightcone simulation – II. Halo and galaxy catalogues. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1513-1530.	4.4	126
34	The MICE Grand Challenge light-cone simulation $\hat{a} \in \mathbb{N}$ III. Galaxy lensing mocks from all-sky lensing maps. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1319-1332.	4.4	126
35	Cosmology from cosmic shear with Dark Energy Survey Science Verification data. Physical Review D, 2016, 94, .	4.7	125
36	Cosmological parameter constraints from SDSS luminous red galaxies: a new treatment of large-scale clustering. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1643-1664.	4.4	120

#	Article	IF	Citations
37	The Dark Energy Survey Data Release 2. Astrophysical Journal, Supplement Series, 2021, 255, 20.	7.7	120
38	Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3653-3673.	4.4	119
39	Modeling scale-dependent bias on the baryonic acoustic scale with the statistics of peaks of Gaussian random fields. Physical Review D, 2010, 82, .	4.7	118
40	An algorithm to build mock galaxy catalogues using MICE simulations. Monthly Notices of the Royal Astronomical Society, 2015, 447, 646-670.	4.4	115
41	Dark Energy Survey Year 1 results: measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4866-4883.	4.4	109
42	Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing. Physical Review D, 2016, 94, .	4.7	105
43	Dark Energy Survey year 1 results: Galaxy clustering for combined probes. Physical Review D, 2018, 98, .	4.7	102
44	Resonant photon creation in a three-dimensional oscillating cavity. Physical Review A, 2001, 64, .	2.5	100
45	Cosmology from large-scale structure. Astronomy and Astrophysics, 2020, 633, L10.	5.1	98
46	Quantum electromagnetic field in a three-dimensional oscillating cavity. Physical Review A, 2002, 66, .	2.5	96
47	An accurate tool for the fast generation of dark matter halo catalogues. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2389-2402.	4.4	96
48	CMB lensing tomography with the DES Science Verification galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3213-3244.	4.4	95
49	Dark Energy Survey Year 3 Results: Photometric Data Set for Cosmology. Astrophysical Journal, Supplement Series, 2021, 254, 24.	7.7	93
50	Detection of the kinematic Sunyaev–Zel'dovich effect with DES Year 1 and SPT. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3172-3193.	4.4	88
51	Constraints on the richness–mass relation and the optical-SZE positional offset distribution for SZE-selected clusters. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2305-2319.	4.4	87
52	Cosmic voids and void lensing in the Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 465, 746-759.	4.4	86
53	Cosmological Constraints from Multiple Probes in the Dark Energy Survey. Physical Review Letters, 2019, 122, 171301.	7.8	86
54	The 6dF Galaxy Survey: cosmological constraints from the velocity power spectrum. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3926-3947.	4.4	84

#	Article	IF	Citations
55	Methods for cluster cosmology and application to the SDSS in preparation for DES Year 1 release. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4779-4800.	4.4	82
56	KiDS-1000 methodology: Modelling and inference for joint weak gravitational lensing and spectroscopic galaxy clustering analysis. Astronomy and Astrophysics, 2021, 646, A129.	5.1	82
57	ON THE RADIATIVE EFFICIENCIES, EDDINGTON RATIOS, AND DUTY CYCLES OF LUMINOUS HIGH-REDSHIFT QUASARS. Astrophysical Journal, 2010, 718, 231-250.	4.5	81
58	Cosmic shear measurements with Dark Energy Survey Science Verification data. Physical Review D, 2016, 94, .	4.7	81
59	DES14X3taz: A TYPE I SUPERLUMINOUS SUPERNOVA SHOWING A LUMINOUS, RAPIDLY COOLING INITIAL PRE-PEAK BUMP. Astrophysical Journal Letters, 2016, 818, L8.	8.3	78
60	Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4301-4324.	4.4	77
61	OzDES multifibre spectroscopy for the Dark Energy Survey: first-year operation and results. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3047-3063.	4.4	75
62	Density split statistics: Cosmological constraints from counts and lensing in cells in DES Y1 and SDSS data. Physical Review D, 2018, 98, .	4.7	75
63	A Statistical Standard Siren Measurement of the Hubble Constant from the LIGO/Virgo Gravitational Wave Compact Object Merger GW190814 and Dark Energy Survey Galaxies. Astrophysical Journal Letters, 2020, 900, L33.	8.3	74
64	nIFTy cosmology: Galaxy/halo mock catalogue comparison project on clustering statistics. Monthly Notices of the Royal Astronomical Society, 2015, 452, 686-700.	4.4	71
65	Weak lensing by galaxy troughs in DES Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3367-3380.	4.4	71
66	No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2016, 457, 786-808.	4.4	71
67	Dark Energy Survey year 1 results: Galaxy-galaxy lensing. Physical Review D, 2018, 98, .	4.7	71
68	Recovering 3D clustering information with angular correlations. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1891-1902.	4.4	69
69	Survey geometry and the internal consistency of recent cosmic shear measurements. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4998-5004.	4.4	68
70	Dark Energy Survey Year 3 results: redshift calibration of the weak lensing source galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4249-4277.	4.4	67
71	Modelling the angular correlation function and its full covariance in photometric galaxy surveys. Monthly Notices of the Royal Astronomical Society, 2011, 414, 329-349.	4.4	66
72	ICE-COLA: towards fast and accurate synthetic galaxy catalogues optimizing a quasi- <i>N</i> -body method. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2327-2341.	4.4	65

#	Article	IF	Citations
73	Comparing approximate methods for mock catalogues and covariance matrices $\hat{a} \in \mathbb{N}$. Correlation function. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1786-1806.	4.4	63
74	Constructing regularized cosmic propagators. Physical Review D, 2012, 85, .	4.7	62
7 5	First cosmology results using Type Ia supernova from the Dark Energy Survey: simulations to correct supernova distance biases. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1171-1187.	4.4	62
76	Cross-correlation of spectroscopic and photometric galaxy surveys: cosmology from lensing and redshift distortions. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2904-2930.	4.4	61
77	Tracing the sound horizon scale with photometric redshift surveys. Monthly Notices of the Royal Astronomical Society, 2011, 411, 277-288.	4.4	60
78	Dark Energy Survey Year 1 results: curved-sky weak lensing mass map. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3165-3190.	4.4	60
79	First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey: Photometric Pipeline and Light-curve Data Release. Astrophysical Journal, 2019, 874, 106.	4.5	60
80	The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final sample. Monthly Notices of the Royal Astronomical Society, 0, , stw3384.	4.4	58
81	Model for resonant photon creation in a cavity with time-dependent conductivity. Physical Review A, 2004, 70, .	2.5	57
82	<scp>MPTbreeze</scp> : a fast renormalized perturbative scheme. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2537-2551.	4.4	57
83	A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED LIGO GRAVITATIONAL WAVE EVENT GW150914. Astrophysical Journal Letters, 2016, 823, L33.	8.3	55
84	Comparing approximate methods for mock catalogues and covariance matrices – III: bispectrum. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4883-4905.	4.4	55
85	Measuring the growth of matter fluctuations with third-order galaxy correlations. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1724-1745.	4.4	54
86	Comparing approximate methods for mock catalogues and covariance matrices II: power spectrum multipoles. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2806-2824.	4.4	53
87	Joint measurement of lensing–galaxy correlations using SPT and DES SV data. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4099-4114.	4.4	50
88	Cosmology from large-scale galaxy clustering and galaxy–galaxy lensing with Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4045-4062.	4.4	48
89	Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1444-1461.	4.4	48
90	Wide-field lensing mass maps from Dark Energy Survey science verification data: Methodology and detailed analysis. Physical Review D, 2015, 92, .	4.7	47

#	Article	IF	Citations
91	MAPPING AND SIMULATING SYSTEMATICS DUE TO SPATIALLY VARYING OBSERVING CONDITIONS IN DES SCIENCE VERIFICATION DATA. Astrophysical Journal, Supplement Series, 2016, 226, 24.	7.7	47
92	Cross-correlation of gravitational lensing from DES Science Verification data with SPT and <i>Planck </i> lensing. Monthly Notices of the Royal Astronomical Society, 2016, 459, 21-34.	4.4	46
93	The PAU Survey: early demonstration of photometric redshift performance in the COSMOS field. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4200-4215.	4.4	46
94	The halo bispectrum in N-body simulations with non-Gaussian initial conditions. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2903-2930.	4.4	45
95	Clustering of luminous red galaxies - III. Baryon acoustic peak in the three-point correlation. Monthly Notices of the Royal Astronomical Society, 2009, 399, 801-811.	4.4	44
96	Clustering of photometric luminous red galaxies - II. Cosmological implications from the baryon acoustic scale. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1689-1694.	4.4	44
97	Dark Energy Survey Year 1 results: the impact of galaxy neighbours on weak lensing cosmology with im3shape. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4524-4543.	4.4	43
98	More out of less: an excess integrated Sachs–Wolfe signal from supervoids mapped out by the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5267-5277.	4.4	42
99	Dark Energy Survey Year 3 results: Optimizing the lens sample in a combined galaxy clustering and galaxy-galaxy lensing analysis. Physical Review D, 2021, 103, .	4.7	42
100	Dark Energy Survey Year 3 results: Curved-sky weak lensing mass map reconstruction. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4626-4645.	4.4	42
101	A measurement of CMB cluster lensing with SPT and DES year 1 data. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2674-2688.	4.4	41
102	Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data. Physical Review Letters, 2015, 115, 051301.	7.8	40
103	Galaxy–galaxy lensing in the Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4204-4218.	4.4	40
104	Dark Energy Survey year 3 results: covariance modelling and its impact on parameter estimation and quality of fit. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3125-3165.	4.4	39
105	Dark Energy Survey year 1 results: Joint analysis of galaxy clustering, galaxy lensing, and CMB lensing two-point functions. Physical Review D, 2019, 100 , .	4.7	38
106	Clustering of photometric luminous red galaxies - I. Growth of structure and baryon acoustic feature. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2577-2591.	4.4	37
107	The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: angular clustering tomography and its cosmological implications. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2938-2956.	4.4	37
108	Dark Energy Survey Year 3 Results: clustering redshifts – calibration of the weak lensing source redshift distributions with <i>redMaGiC</i> and BOSS/eBOSS. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1223-1247.	4.4	36

#	Article	IF	CITATIONS
109	Dark Energy Survey Year 3 results: A 2.7% measurement of baryon acoustic oscillation distance scale at redshift 0.835. Physical Review D, 2022, 105, .	4.7	36
110	The matter bispectrum in N-body simulations with non-Gaussian initial conditions. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	35
111	Measuring redshift-space distortions using photometric surveys. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2193-2204.	4.4	35
112	Dark Energy Survey Year 1 Results: Tomographic cross-correlations between Dark Energy Survey galaxies and CMB lensing from South Pole <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi><mml:mi>Telescope</mml:mi><mml:mo>+</mml:mo><mml:mi>Planck</mml:mi>Physical Review D, 2019, 100, .</mml:mi></mml:math>	4.7 <td>35 w></td>	35 w>
113	Improving weak lensing mass map reconstructions using Gaussian and sparsity priors: application to DES SV. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2871-2888.	4.4	34
114	Multipoint propagators for non-Gaussian initial conditions. Physical Review D, 2010, 82, .	4.7	32
115	Discovery of the Lensed Quasar System DES J0408-5354. Astrophysical Journal Letters, 2017, 838, L15.	8.3	32
116	Dark Energy Survey year 1 results: the relationship between mass and light around cosmic voids. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3573-3587.	4.4	32
117	Testing one-loop galaxy bias: Power spectrum. Physical Review D, 2020, 102, .	4.7	32
118	DES Y1 Results: validating cosmological parameter estimation using simulated Dark Energy Surveys. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4614-4635.	4.4	31
119	Dark Energy Survey Year 3 results: galaxy clustering and systematics treatment for lens galaxy samples. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2665-2687.	4.4	31
120	Dark Energy Survey Year 3 results: cosmology with moments of weak lensing mass maps – validation on simulations. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4060-4087.	4.4	29
121	CosmoHub: Interactive exploration and distribution of astronomical data on Hadoop. Astronomy and Computing, 2020, 32, 100391.	1.7	28
122	Cosmological implications of the full shape of anisotropic clustering measurements in BOSS and eBOSS. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5657-5670.	4.4	26
123	ICE-COLA: fast simulations for weak lensing observables. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3051-3061.	4.4	25
124	Dark Energy Survey Year-1 results: galaxy mock catalogues for BAO. Monthly Notices of the Royal Astronomical Society, 2018, 479, 94-110.	4.4	25
125	Hertz potentials approach to the dynamical Casimir effect in cylindrical cavities of arbitrary section. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7, S32-S39.	1.4	24
126	ASSESSMENT OF SYSTEMATIC CHROMATIC ERRORS THAT IMPACT SUB-1% PHOTOMETRIC PRECISION IN LARGE-AREA SKY SURVEYS. Astronomical Journal, 2016, 151, 157.	4.7	24

#	Article	IF	CITATIONS
127	The Physics of the Accelerating Universe Camera. Astronomical Journal, 2019, 157, 246.	4.7	24
128	<i>Euclid</i> : The importance of galaxy clustering and weak lensing cross-correlations within the photometric <i>Euclid</i> survey. Astronomy and Astrophysics, 2020, 643, A70.	5.1	24
129	Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3203-3216.	4.4	23
130	Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at Redshift Two. Astrophysical Journal, 2018, 854, 37.	4.5	23
131	Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2196-2208.	4.4	23
132	Dark Energy Survey Year 3 results: Exploiting small-scale information with lensing shear ratios. Physical Review D, 2022, 105, .	4.7	23
133	Dark Energy Survey Year 1 Results: Cross-correlation between Dark Energy Survey Y1 galaxy weak lensing and South Pole Telescope <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>P</mml:mi><mml:mi> <mml:mi> <mml:m< td=""><td>nml:mi>a<</td><td>/mml:mi><m< td=""></m<></td></mml:m<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mrow></mml:mrow></mml:math>	nml:mi>a<	/mml:mi> <m< td=""></m<>
134	Dark Energy Survey year 1 results: galaxy sample for BAO measurement. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2807-2822.	4.4	22
135	Dark energy survey year 3 results: High-precision measurement and modeling of galaxy-galaxy lensing. Physical Review D, 2022, 105, .	4.7	22
136	Precision cosmology in muddy waters: cosmological constraints and N-body codes. Monthly Notices of the Royal Astronomical Society, 2014, 440, 249-268.	4.4	21
137	Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data. Monthly Notices of the Royal Astronomical Society, 2017, 466, 228-247.	4.4	21
138	Inference from the small scales of cosmic shear with current and future Dark Energy Survey data. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2567-2583.	4.4	21
139	Weak lensing magnification in the Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1071-1085.	4.4	21
140	Dark Energy Survey Year 1 results: measurement of the galaxy angular power spectrum. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3870-3883.	4.4	21
141	Cross-correlation of Dark Energy Survey Year 3 lensing data with ACT and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>P</mml:mi><mml:mi> </mml:mi> <mml:mi> a</mml:mi> <mml:mi> n</mml:mi> <mml:mi and="" constraints="" effect="" halo="" ii.="" modeling="" observations.="" on="" pressure<="" sunyaev-zel'dovich="" td="" thermal=""><td>>ek†mml:r</td><td>mi2k mml:mi</td></mml:mi></mml:math>	> ek† mml:r	mi 2 k mml:mi
142	A DARK ENERGY CAMERA SEARCH FOR MISSING SUPERGIANTS IN THE LMC AFTER THE ADVANCED LIGO GRAVITATIONAL-WAVE EVENT GW150914. Astrophysical Journal Letters, 2016, 823, L34.	8.3	20
143	Optimized clustering estimators for BAO measurements accounting for significant redshift uncertainty. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4456-4468.	4.4	20
144	A machine learning approach to galaxy properties: joint redshift–stellar mass probability distributions with Random Forest. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2770-2786.	4.4	19

#	Article	IF	Citations
145	Dark Energy Survey Year 3 results: Cosmology from combined galaxy clustering and lensing validation on cosmological simulations. Physical Review D, 2022, 105, .	4.7	19
146	Models of the strongly lensed quasar DES J0408â^35354. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4038-4050.	4.4	18
147	Identifying RR Lyrae Variable Stars in Six Years of the Dark Energy Survey. Astrophysical Journal, 2021, 911, 109.	4.5	18
148	Deep SOAR follow-up photometry of two Milky Way outer-halo companions discovered with Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2006-2018.	4.4	17
149	Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey. Physical Review D, 2016, 94, .	4.7	16
150	DES Y1 results: Splitting growth and geometry to test <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">ĥ</mml:mi><mml:mi>CDM</mml:mi></mml:math> . Physical Review D, 2021, 103, .	4.7	16
151	Milky Way Satellite Census. IV. Constraints on Decaying Dark Matter from Observations of Milky Way Satellite Galaxies. Astrophysical Journal, 2022, 932, 128.	4.5	16
152	Redshift-space distortions from the cross-correlation of photometric populations. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2825-2835.	4.4	15
153	A new method to measure galaxy bias by combining the density and weak lensing fields. Monthly Notices of the Royal Astronomical Society, 2016, 462, 35-47.	4.4	15
154	BAO from angular clustering: optimization and mitigation of theoretical systematics. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3031-3051.	4.4	14
155	Galaxy bias from galaxy–galaxy lensing in the DES science verification data. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1667-1684.	4.4	14
156	Consistency of cosmic shear analyses in harmonic and real space. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3796-3817.	4.4	14
157	One simulation to have them all: performance of the Bias Assignment Method against N-body simulations. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	13
158	Testing one-loop galaxy bias: Cosmological constraints from the power spectrum. Physical Review D, 2021, 104, .	4.7	13
159	Comparing Dark Energy Survey and <i>HST </i> i>–CLASH observations of the galaxy cluster RXC J2248.7â"4431: implications for stellar mass versus dark matter. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1486-1499.	4.4	12
160	Studying Type II supernovae as cosmological standard candles using the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4860-4892.	4.4	12
161	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2021, 655, A44.	5.1	12
162	Crowdsourcing quality control for Dark Energy Survey images. Astronomy and Computing, 2016, 16, 99-108.	1.7	11

#	Article	IF	Citations
163	The PAU Survey: Intrinsic alignments and clustering of narrow-band photometric galaxies. Astronomy and Astrophysics, 2021, 646, A147.	5.1	11
164	The Observed Evolution of the Stellar Mass–Halo Mass Relation for Brightest Central Galaxies. Astrophysical Journal, 2022, 928, 28.	4.5	11
165	Testing the consistency of three-point halo clustering in Fourier and configuration space. Monthly Notices of the Royal Astronomical Society, 2018, 476, 814-829.	4.4	10
166	The PAU camera and the PAU survey at the William Herschel Telescope. Proceedings of SPIE, 2012, , .	0.8	9
167	Galaxies in X-ray selected clusters and groups in Dark Energy Survey data – II. Hierarchical Bayesian modelling of the red-sequence galaxy luminosity function. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1-17.	4.4	8
168	Dark Energy Survey Year 3 results: galaxy sample for BAO measurement. Monthly Notices of the Royal Astronomical Society, 2021, 509, 778-799.	4.4	8
169	The dark energy survey 5-yr photometrically identified type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5159-5177.	4.4	8
170	Dark Energy Survey Year 1 results: the effect of intracluster light on photometric redshifts for weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4389-4399.	4.4	7
171	Dark Energy Survey Year 3 Results: Galaxy mock catalogs for BAO analysis. Astronomy and Astrophysics, 2021, 656, A106.	5.1	6
172	Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey. I. Evidence for Thermal Energy Anisotropy Using Oriented Stacking. Astrophysical Journal, 2022, 933, 134.	4.5	6
173	Linear systematics mitigation in galaxy clustering in the Dark Energy Survey Year 1 Data. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4349-4362.	4.4	5
174	Galaxy clustering in harmonic space from the dark energy survey year 1 data: compatibility with real-space results. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5714-5724.	4.4	5
175	Clustering with general photo- <i>z</i> uncertainties: application to Baryon Acoustic Oscillations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3965-3982.	4.4	4
176	The PAU camera. Proceedings of SPIE, 2010, , .	0.8	2
177	Withdrawn as Duplicate: Survey geometry and the internal consistency of recent cosmic shear measurements. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 486, L8-L8.	3.3	1