Shanhui Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7058495/publications.pdf

Version: 2024-02-01

172457 182427 3,502 157 29 51 citations h-index g-index papers 160 160 160 2659 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	High-Precision Tunable Single-Frequency Fiber Laser at $1.5\hat{l}$ 4m Based on Self-Injection Locking. IEEE Photonics Technology Letters, 2022, 34, 633-636.	2.5	2
2	2.02 kW and 4.7 GHz linewidth near-diffraction-limited all-fiber MOPA laser. Applied Physics Express, 2022, 15, 032001.	2.4	1
3	Gain-Switched Single-Frequency DBR Pulsed Fiber Laser at 2.0 μm. IEEE Photonics Technology Letters, 2022, 34, 255-258.	2.5	11
4	A 102 W High-Power Linearly-Polarized All-Fiber Single-Frequency Laser at 1560 nm. Photonics, 2022, 9, 396.	2.0	2
5	Short-Wavelength, in-Band-Pumped Single- Frequency DBR Tm ³⁺ -Doped Germanate Fiber Laser at 1.7 <i>1¼</i> m. IEEE Photonics Technology Letters, 2021, 33, 350-353.	2.5	15
6	An effective and universal intensity noise suppression technique for single-frequency fiber lasers at $1.5\mathrm{f}$ /4m. Laser Physics, 2021, 31, 075101.	1.2	3
7	Phase-noise suppression for the optical-heterodyne-generated microwave based on the amplitude-to-phase conversion. Applied Physics Express, 2021, 14, 072003.	2.4	1
8	Continuously spacing-tunable multi-wavelength single-frequency fiber laser based on cascaded four-wave mixing at 1.06 $1\frac{1}{4}$ m. Journal of Optics (United Kingdom), 2021, 23, 095502.	2.2	1
9	316 W high-brightness narrow-linewidth linearly-polarized all-fiber single-frequency laser at 1950 nm. Applied Physics Express, 2021, 14, 112004.	2.4	6
10	Compact passively Q-switched single-frequency distributed Bragg reflector fiber laser at 2.0  µm. Applied Optics, 2021, 60, 10684.	1.8	7
11	Ultralow-intensity-noise single-frequency fiber-based laser at 780 nm. Applied Physics Express, 2020, 13, 022002.	2.4	10
12	Glassâ€forming regions and enhanced 2.7 μm emission by Er 3+ heavily doping in TeO 2 –Ga 2 O 3 –R 2 O	(og) Tj ETC	2 q $_{ m I4}^{ m 0}$ 0 0 rgBT $_{ m 0}$
13	Influence of stimulated Brillouin scattering on the noise evolution of high-power all-fiber single-frequency MOPA system. Optics and Laser Technology, 2020, 128, 106212.	4.6	5
14	Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb. Science Advances, 2020, 6, eaay1192.	10.3	34
15	Microlasers from AlEâ€Active BODIPY Derivative. Small, 2020, 16, e1907074.	10.0	23
16	Tm:YAG ceramic derived multimaterial fiber with high gain per unit length for 2 µm laser applications. Optics Letters, 2020, 45, 1047.	3.3	15
17	Single-frequency DBR Nd-doped fiber laser at 1120  nm with a narrow linewidth and low threshold. Optics Letters, 2020, 45, 2263.	3.3	24
18	55  W  kilohertz-linewidth core- and in-band-pumped linearly polarized single-frequency fiber la 1950  nm. Optics Letters, 2020, 45, 2343.	ser at	17

#	Article	IF	CITATIONS
19	Intensity-noise suppression in 1950-nm single-frequency fiber laser by bidirectional amplifier configuration. Optics Letters, 2020, 45, 5484.	3.3	9
20	High-efficiency and high-power single-frequency fiber laser at 1.6  μm based on cascaded energy-transfepumping. Photonics Research, 2020, 8, 414.	er _{7.0}	12
21	Three-level all-fiber laser at 915 nm based on polarization-maintaining Nd3+-doped silica fiber. Chinese Optics Letters, 2020, 18, 011401.	2.9	6
22	Noise-sideband-free and narrow-linewidth photonic microwave generation based on anoptical heterodyne technique of low-noise fiber lasers. Applied Optics, 2020, 59, 7907.	1.8	1
23	Quantumâ€dotsâ€precipitated rareâ€earthâ€doped glass for ultraâ€broadband midâ€infrared emissions. Journal the American Ceramic Society, 2019, 102, 1560-1565.	of 3.8	6
24	Enhanced <scp>NIR</scp> photoemission from Biâ€doped aluminoborate glasses via topological tailoring of glass structure. Journal of the American Ceramic Society, 2019, 102, 1710-1719.	3.8	13
25	Multiâ€component yttrium aluminosilicate (<scp>YAS</scp>) fiber prepared by meltâ€inâ€tube method for stable singleâ€frequency laser. Journal of the American Ceramic Society, 2019, 102, 2551-2557.	3.8	24
26	Mechanism for broadening and enhancing Nd ³⁺ emission in zinc aluminophosphate laser glass by addition of Bi ₂ O ₃ . Journal of the American Ceramic Society, 2019, 102, 1694-1702.	3.8	20
27	High-Power Large-Energy Rectangular Mode-Locked Er-Doped Fiber Laser Based on High-Damage-Threshold MoS ₂ Saturable Absorber. IEEE Photonics Journal, 2019, 11, 1-12.	2.0	8
28	Boosting the branching ratio at 900 nm in Nd ³⁺ doped germanophosphate glasses by crystal field strength and structural engineering for efficient blue fiber lasers. Journal of Materials Chemistry C, 2019, 7, 11824-11833.	5.5	18
29	Multi-Wavelength, Passively Q-Switched, Single-Frequency Fiber Laser. IEEE Photonics Technology Letters, 2019, 31, 1479-1482.	2.5	8
30	High-Power Large-Energy Raman Soliton Generations Within a Mode-Locked Yb-Doped Fiber Laser Based on High-Damage-Threshold CVD-MoS2 as Modulator. Nanomaterials, 2019, 9, 1305.	4.1	4
31	Multifunctional GeSe core fibers. Materials Letters, 2019, 247, 193-196.	2.6	6
32	Simultaneously improving the linewidth and the low-frequency relative intensity noise of a single-frequency fiber laser. Applied Physics Express, 2019, 12, 052018.	2.4	7
33	Single-Frequency Pulsed Fiber Lasers. Optical and Fiber Communications Reports, 2019, , 97-104.	0.1	O
34	Amplification of CW Single-Frequency Lasers. Optical and Fiber Communications Reports, 2019, , 115-148.	0.1	0
35	Enhanced single-mode fiber laser emission by nano-crystallization of oxyfluoride glass-ceramic cores. Journal of Materials Chemistry C, 2019, 7, 5155-5162.	5.5	31
36	Fundamental Principle and Enabling Technologies of Single-Frequency Fiber Lasers. Optical and Fiber Communications Reports, 2019, , 11-53.	0.1	1

#	Article	IF	CITATIONS
37	Single-Frequency Active Fiber Lasers. Optical and Fiber Communications Reports, 2019, , 55-83.	0.1	0
38	Influence of Laser Linewidth on Phase-OTDR System Based on Heterodyne Detection. Journal of Lightwave Technology, 2019, 37, 2641-2647.	4.6	20
39	915  nm all-fiber laser based on novel Nd-doped high alumina and yttria glass @ silica glass hybrid fiber for the pure blue fiber laser. Optics Letters, 2019, 44, 2153.	3.3	26
40	Ultra-broadband red to NIR photoemission from multiple bismuth centers in Sr ₂ B ₅ O ₉ Cl:Bi crystal. Optics Letters, 2019, 44, 4821.	3.3	11
41	In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser. Photonics Research, 2019, 7, 300.	7.0	19
42	Instant precipitation of KMgF ₃ :Ni ²⁺ nanocrystals with broad emission (1.3â€2.2ÂÎ⅓m) for potential combustion gas sensors. Journal of the American Ceramic Society, 2018, 101, 3890-3899.	3.8	25
43	Tunable luminescence from bismuthâ€doped phosphate laser glass by engineering photonic glass structure. Journal of the American Ceramic Society, 2018, 101, 1916-1922.	3.8	18
44	Ultra-compact all-fiber narrow-linewidth single-frequency blue laser at 489 nm. Journal of Optics (United Kingdom), 2018, 20, 025803.	2.2	6
45	New strategy to enhance the broadband nearâ€infrared emission of bismuthâ€doped laser glasses. Journal of the American Ceramic Society, 2018, 101, 2297-2304.	3.8	19
46	Creating and stabilizing Bi NIR-emitting centers in low Bi content materials by topo-chemical reduction and tailoring of the local glass structure. Journal of Materials Chemistry C, 2018, 6, 5384-5390.	5.5	42
47	The preparation of Yttrium Aluminosilicate (YAS) Glass Fiber with heavy doping of Tm 3+ from Polycrystalline YAG ceramics. Journal of the American Ceramic Society, 2018, 101, 4627-4633.	3.8	20
48	Enhanced thermoelectric properties of polycrystalline Bi2Te3 core fibers with preferentially oriented nanosheets. APL Materials, $2018, 6, .$	5.1	33
49	Single mode compound microsphere laser. Optics Communications, 2018, 420, 1-5.	2.1	7
50	Manipulating Bi NIR emission by adjusting optical basicity, boron and aluminum coordination in borate laser glasses. Journal of the American Ceramic Society, 2018, 101, 624-633.	3.8	23
51	A yttrium aluminosilicate glass fiber with graded refractive index fabricated by meltâ€inâ€tube method. Journal of the American Ceramic Society, 2018, 101, 1616-1622.	3.8	27
52	Ultrabroad Photoemission from an Amorphous Solid by Topochemical Reduction. Advanced Optical Materials, 2018, 6, 1801059.	7.3	36
53	Polarization-Maintaining Single-Frequency Fiber Laser With Quadruple Wavelengths at the C-Band. IEEE Photonics Journal, 2018, 10, 1-10.	2.0	2
54	Ultrabroadband near-Infrared Photoemission from Bismuth-Centers in Nitridated Oxide Glasses and Optical Fiber. ACS Photonics, 2018, 5, 4393-4401.	6.6	47

#	Article	IF	CITATIONS
55	Transverse mode switchable all-fiber Brillouin laser. Optics Letters, 2018, 43, 4172.	3.3	16
56	Impact of Stimulated Raman Scattering on the Transverse Mode Instability Threshold. IEEE Photonics Journal, 2018, 10, 1-9.	2.0	16
57	Distribution and stabilization of bismuth NIR centers in Bi-doped aluminosilicate laser glasses by managing glass network structure. Journal of Materials Chemistry C, 2018, 6, 7814-7821.	5.5	21
58	High-efficiency sub-watt in-band-pumped single-frequency DBR Tm ³⁺ -doped germanate fiber laser at 1950 nm. Optics Express, 2018, 26, 6817.	3.4	37
59	Composite filtering effect in a SESAM mode-locked fiber laser with a 32-GHz fundamental repetition rate: switchable states from single soliton to pulse bunch. Optics Express, 2018, 26, 10842.	3.4	28
60	15 W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA at 16 \hat{l} 4m. Optics Express, 2018, 26, 12863.	3.4	15
61	All-fiber stable orbital angular momentum beam generation and propagation. Optics Express, 2018, 26, 17429.	3.4	32
62	Noise-sidebands-free and ultra-low-RIN 15  μm single-frequency fiber laser towards coherent optical detection. Photonics Research, 2018, 6, 326.	7.0	33
63	High-repetition-rate ultrafast fiber lasers. Optics Express, 2018, 26, 16411.	3.4	35
64	Near quantum-noise limited and absolute frequency stabilized 1083  nm single-frequency fiber laser. Optics Letters, 2018, 43, 42.	3.3	12
65	Multi-functional bismuth-doped bioglasses: combining bioactivity and photothermal response for bone tumor treatment and tissue repair. Light: Science and Applications, 2018, 7, 1.	16.6	301
66	Unusual thermal response of tellurium near-infrared luminescence in phosphate laser glass. Optics Letters, 2018, 43, 4823.	3.3	9
67	210 W kHz-linewidth linearly-polarized all-fiber single-frequency MOPA laser. , 2018, , .		0
68	Partially doped fiber design for suppressing transverse mode instability., 2018,,.		0
69	Compact passively Q-switched single-frequency Er ³⁺ /Yb ³⁺ codoped phosphate fiber laser. Applied Physics Express, 2017, 10, 052502.	2.4	14
70	High order vector mode coupling mechanism based on mode matching method. Journal of Optics (United Kingdom), 2017, 19, 065702.	2.2	2
71	Site Occupancy Preference and Antithermal Quenching of the Bi ²⁺ Deep Red Emission in β-Ca ₂ P ₂ O ₇ :Bi ²⁺ . Inorganic Chemistry, 2017, 56, 6499-6506.	4.0	50
72	An efficient low-noise single-frequency 1033 nm Yb3+-doped MOPA phosphate fiber laser system. Journal of Optics (United Kingdom), 2017, 19, 065502.	2.2	7

#	Article	IF	CITATIONS
73	Iterative method for the design of LP _{0m} mode converter. Journal of Optics (United) Tj ETQq1 10.	784314 rgBT 2.2	
74	All-fiber orbital angular momentum mode generation and transmission system. Optics Communications, 2017, 403, 180-184.	2.1	7
75	Controlled generation of different orbital angular momentum states in a hybrid optical fiber. Optics Communications, 2017, 402, 668-671.	2.1	4
76	Self-injection locked and semiconductor amplified ultrashort cavity single-frequency Yb^3+-doped phosphate fiber laser at 978 nm. Optics Express, 2017, 25, 1535.	3.4	12
77	Low-crosstalk orbital angular momentum fiber coupler design. Optics Express, 2017, 25, 11200.	3.4	13
78	Frequency noise of distributed Bragg reflector single-frequency fiber laser. Optics Express, 2017, 25, 12601.	3.4	11
79	High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 15 μm MOPA laser. Optics Express, 2017, 25, 13324.	3.4	17
80	kHz-order linewidth controllable 1550 nm single-frequency fiber laser for coherent optical communication. Optics Express, 2017, 25, 19752.	3.4	31
81	5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser. Optics Express, 2017, 25, 27646.	3.4	44
82	High spatial resolution distributed fiber strain sensor based on phase-OFDR. Optics Express, 2017, 25, 27913.	3.4	65
83	Efficient 16 $\hat{l}^{1}\!\!/4$ m linearly-polarized single-frequency phosphate glass fiber laser. Optics Express, 2017, 25, 29078.	3.4	21
84	Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2  kW all-fiberized laser. Photonics Research, 2017, 5, 77.	7.0	50
85	Review of recent progress on single-frequency fiber lasers. Journal of the Optical Society of America B: Optical Physics, 2017, 34, A49.	2.1	191
86	Mitigate transverse mode instability by linear inner-cladding fiber. Optical Engineering, 2017, 56, 1.	1.0	1
87	Linewidth suppression mechanism of self-injection locked single-frequency fiber laser. Optics Express, 2016, 24, 18907.	3.4	23
88	Ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser. Optics Express, 2016, 24, 26209.	3.4	28
89	1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser. Optics Express, 2016, 24, 29794.	3.4	35
90	Ultra-compact Q-switched single-frequency pulsed fiber lasers. , 2016, , .		0

#	Article	IF	CITATIONS
91	Unusual anti-thermal degradation of bismuth NIR luminescence in bismuth doped lithium tantalum silicate laser glasses. Optics Express, 2016, 24, 18649.	3.4	12
92	Linearly frequency-modulated pulsed single-frequency fiber laser at 1083 nm. Optics Express, 2016, 24, 3162.	3.4	16
93	Thermal degradation of ultrabroad bismuth NIR luminescence in bismuth-doped tantalum germanate laser glasses. Optics Letters, 2016, 41, 1340.	3.3	21
94	Short all Tm-doped germanate glass fiber MOPA single-frequency laser at 195 \hat{l}^4 m. Optics Express, 2016, 24, 10956.	3.4	20
95	Topoâ€Chemical Tailoring of Tellurium Quantum Dot Precipitation from Supercooled Polyphosphates for Broadband Optical Amplification. Advanced Optical Materials, 2016, 4, 1624-1634.	7.3	33
96	Dual-wavelength passively q-switched single-frequency fiber laser. Optics Express, 2016, 24, 16149.	3.4	13
97	Linear inner cladding fiber amplifier suppressing mode instability. , 2016, , .		2
98	188 W nanosecond pulsed fiber amplifier at 1064 nm. Laser Physics, 2016, 26, 075103.	1.2	3
99	Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser. Optics Letters, 2016, 41, 1333.	3.3	47
100	A Broad Continuous Temperature Tunable DBR Single-Frequency Fiber Laser at 1064 nm. IEEE Photonics Journal, 2016, 8, 1-7.	2.0	13
101	52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser. Journal of Optics (United Kingdom), 2016, 18, 055801.	2.2	8
102	Superbroad visible to NIR photoluminescence from Bi^+ evidenced in Ba_2B_5O_9Cl: Bi crystal. Optics Express, 2016, 24, 2830.	3.4	28
103	High-Speed Frequency Modulated Low-Noise Single-Frequency Fiber Laser. IEEE Photonics Technology Letters, 2016, 28, 1692-1695.	2.5	10
104	Spectrally Encoded Confocal Microscopy at 1.9 <inline-formula> <tex-math notation="LaTeX">\$mu ext{m}\$ </tex-math></inline-formula> . IEEE Photonics Technology Letters, 2016, 28, 201-204.	2.5	3
105	Mechanism of solitary wave breaking phenomenon in dissipative soliton fiber lasers. Optics Express, 2015, 23, 28761.	3.4	4
106	Compact frequency-modulation pulsed single-frequency fiber laser. , 2015, , .		0
107	Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm. Journal of Optics (United Kingdom), 2015, 17, 125705.	2.2	10
108	Experimental investigation on linewidth characteristics of a single-frequency phosphate fiber laser at $1.0 < i > \hat{l} \frac{1}{4} < /i > m$. Laser Physics, 2015, 25, 025103.	1.2	3

#	Article	IF	CITATIONS
109	Compact slow-light single-frequency fiber laser at 1550 nm. Applied Physics Express, 2015, 8, 082703.	2.4	19
110	Pulsing Manipulation in a 1.55- <inline-formula> <tex-math notation="LaTeX">\$mu ext{m}\$ </tex-math></inline-formula> Mode-Locked Fiber Laser by a 1- <inline-formula> <tex-math notation="LaTeX">\$mu ext{m}\$ </tex-math></inline-formula> Optical Pattern. IEEE Photonics Technology Letters, 2015, 27, 1949-1952.	2.5	6
111	Simultaneously reducing the intensity and frequency noise of single-frequency phosphate fiber laser. Journal of Optics (United Kingdom), 2015, 17, 075802.	2.2	5
112	Significant intensity noise suppression of single-frequency fiber laser via cascading semiconductor optical amplifier. Laser Physics Letters, 2015, 12, 095101.	1.4	12
113	Analytical identification of soliton dynamics in normal-dispersion passively mode-locked fiber lasers: from dissipative soliton to dissipative soliton resonance. Optics Express, 2015, 23, 14860.	3.4	14
114	All-optical frequency and intensity noise suppression of single-frequency fiber laser. Optics Letters, 2015, 40, 1964.	3.3	56
115	All-fiber mode-locked laser based on microfiber polarizer. Optics Letters, 2015, 40, 784.	3.3	16
116	Spectrally encoded confocal microscopy at the 1.9-ν m wavelength window. , 2015, , .		О
117	Addressing a cavity with patterns at ultra-wideband detune. , 2015, , .		О
118	600-Hz linewidth short-linear-cavity fiber laser. Optics Letters, 2014, 39, 5818.	3.3	32
119	High OSNR watt-level single-frequency one-stage PM-MOPA fiber laser at 1083 nm. Optics Express, 2014, 22, 1181.	3.4	12
120	A wavelength tunable single frequency microfiber laser. Laser Physics Letters, 2014, 11, 015104.	1.4	2
121	High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers. Applied Physics Express, 2014, 7, 062702.	2.4	9
122	3-GHz, ultrafast Yb-fiber laser sources: closing the spectral gaps. Proceedings of SPIE, 2014, , .	0.8	0
123	3  GHz, watt-level femtosecond Raman soliton source. Optics Letters, 2014, 39, 2060.	3.3	21
124	820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 \hat{l}^{1} 4m. Laser Physics Letters, 2014, 11, 035101.	1.4	15
125	Effect of the CW-Seed's Linewidth on the Seeded Generation of Supercontinuum. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 605-611.	2.9	7
126	Broadly Tunable Emission from CaMoO ₄ :Bi Phosphor Based on Locally Modifying the Microenvironment Around Bi ³⁺ Ions. European Journal of Inorganic Chemistry, 2014, 2014, 1373-1380.	2.0	73

#	Article	IF	CITATIONS
127	Broadly tuning Bi ³⁺ emission via crystal field modulation in solid solution compounds (Y,Lu,Sc)VO ₄ :Bi for ultraviolet converted white LEDs. Journal of Materials Chemistry C, 2014, 2, 6068-6076.	5.5	164
128	The ASE noise of a Yb ³⁺ -doped phosphate fiber single-frequency laser at 1083 nm. Laser Physics Letters, 2014, 11, 025104.	1.4	8
129	Linearly Polarized Virtual-folded-ring Fiber Lasers. , 2014, , .		0
130	A linearly frequency modulated narrow linewidth single-frequency fiber laser. Laser Physics Letters, 2013, 10, 075106.	1.4	12
131	Frequency noise of high-gain phosphate fiber single-frequency laser. Laser Physics, 2013, 23, 045107.	1.2	11
132	60 nm Bandwidth, 17 nJ Noiselike Pulse Generation from a Thulium-Doped Fiber Ring Laser. Applied Physics Express, 2013, 6, 112702.	2.4	30
133	Microwave Signal Generation From a Dual-Wavelength Single-Frequency Highly $\frac{F}{3+}/hbox{Yb}^{3+}$ Co-Doped Phosphate Fiber Laser. IEEE Photonics Journal, 2013, 5, 5502306.	2.0	28
134	Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083Ânm. Optics Letters, 2013, 38, 501.	3.3	76
135	Slow/fast light using a very short Er^3+/Yb^3+ co-doped fiber. Optics Letters, 2013, 38, 670.	3.3	9
136	A 1014 nm linearly polarized low noise narrow-linewidth single-frequency fiber laser. Optics Express, 2013, 21, 12419.	3.4	42
137	109 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm. Optics Express, 2013, 21, 12546.	3.4	28
138	195 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm^3+-doped germanate glass fiber. Optics Express, 2013, 21, 20800.	3.4	71
139	Experimental observation of vector solitons in a highly birefringent cavity of ytterbium-doped fiber laser. Optics Express, 2013, 21, 23866.	3.4	20
140	3ÂGHz, Yb-fiber laser-based, few-cycle ultrafast source at the Ti:sapphire laser wavelength. Optics Letters, 2013, 38, 4927.	3.3	41
141	Photonic generation of tunable microwave signals from a dual-wavelength distributed-Bragg-reflector highly Er3+/Yb3+ co-doped phosphate fiber laser. Laser Physics Letters, 2013, 10, 125107.	1.4	7
142	Tunable Dual-Wavelength Narrow-Linewidth Microfiber Laser. Applied Physics Express, 2013, 6, 072701.	2.4	2
143	Effect of the CW-seed's linewidth on the seeded generation of supercontinuum. , $2013, \ldots$		1
144	A Compact Linearly Polarized Low-Noise Single-Frequency Fiber Laser at 1064 nm. Applied Physics Express, 2013, 6, 052701.	2.4	15

#	Article	IF	Citations
145	A femtosecond hybrid mode-locking fiber ring laser at 409 MHz. Laser Physics Letters, 2013, 10, 085104.	1.4	6
146	Ultra Compact Kilohertz-Linewidth High-Power Single-Frequency Laser Based on Er ³⁺ /Yb ³⁺ -Codoped Phosphate Fiber Amplifier. Applied Physics Express, 2013, 6, 022703.	2.4	7
147	3 GHz, femtosecond Raman soliton source. , 2013, , .		0
148	3 GHz few-cycle ultrafast source at 850nm., 2013,,.		0
149	Narrow linewidth single frequency microfiber laser. Optics Letters, 2012, 37, 4323.	3.3	37
150	Compact all-fiber ring femtosecond laser with high fundamental repetition rate. Optics Express, 2012, 20, 24607.	3.4	23
151	Broadband NIR luminescence from a new bismuth doped Ba_2B_5O_9Cl crystal: evidence for the Bi^0 model. Optics Express, 2012, 20, 22569.	3.4	60
152	3ÂGHz, fundamentally mode-locked, femtosecond Yb-fiber laser. Optics Letters, 2012, 37, 3522.	3.3	94
153	All fiber ring bound-soliton laser with a round trip time of 5.7 ns. Optics Communications, 2012, 285, 5449-5451.	2.1	3
154	122-W high-power single-frequency MOPA fiber laser in all-fiber format. Chinese Optics Letters, 2011, 9, 111404-111406.	2.9	5
155	400 mW ultrashort cavity low-noise single-frequency Yb^3+-doped phosphate fiber laser. Optics Letters, 2011, 36, 3708.	3.3	185
156	Spectroscopic Properties and Energy Transfer Analysis of Tm3+-Doped BaF2-Ga2O3-GeO2-La2O3 Glass. Journal of Fluorescence, 2010, 20, 745-751.	2.5	11
157	Judd–Ofelt and laser parameterization of Tm3+-doped barium gallo-germanate glass fabricated with efficient dehydration methods. Optical Materials, 2009, 31, 1723-1728.	3.6	27