List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7058406/publications.pdf Version: 2024-02-01

DAN ZENKERT

#	Article	IF	CITATIONS
1	Multifunctional Carbon Fiber Composites: A Structural, Energy Harvesting, Strain-Sensing Material. ACS Applied Materials & Interfaces, 2022, 14, 33871-33880.	8.0	11
2	Potassium-insertion in polyacrylonitrile-based carbon fibres for multifunctional energy storage, morphing, and strain-sensing. Carbon, 2021, 171, 671-680.	10.3	12
3	A Structural Battery and its Multifunctional Performance. Advanced Energy and Sustainability Research, 2021, 2, 2000093.	5.8	74
4	A Structural Battery and its Multifunctional Performance. Advanced Energy and Sustainability Research, 2021, 2, 2170008.	5.8	32
5	A screen-printing method for manufacturing of current collectors for structural batteries. Multifunctional Materials, 2021, 4, 035002.	3.7	12
6	Alkali Ions Transport into Lignin-Based Hard Carbon Fibers. ECS Meeting Abstracts, 2021, MA2021-02, 227-227.	0.0	0
7	Characterization of the adhesive properties between structural battery electrolytes and carbon fibers. Composites Science and Technology, 2020, 188, 107962.	7.8	25
8	Shape-morphing carbon fiber composite using electrochemical actuation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7658-7664.	7.1	25
9	A residual performance methodology to evaluate multifunctional systems. Multifunctional Materials, 2020, 3, 025002.	3.7	11
10	Carbon Fiber Based Positive Electrodes in Laminated Structural Li-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 983-983.	0.0	0
11	Structural battery composites: a review. Functional Composites and Structures, 2019, 1, 042001.	3.4	133
12	Model of a structural battery and its potential for system level mass savings. Multifunctional Materials, 2019, 2, 035002.	3.7	60
13	Lignin Based Electrospun Carbon Fiber Anode for Sodium Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A1984-A1990.	2.9	25
14	Bicontinuous Electrolytes via Thermally Initiated Polymerization for Structural Lithium Ion Batteries. ACS Applied Energy Materials, 2019, 2, 4362-4369.	5.1	71
15	Blister propagation in sandwich panels. Journal of Sandwich Structures and Materials, 2019, 21, 1683-1699.	3.5	0
16	Prospective Life Cycle Assessment of a Structural Battery. Sustainability, 2019, 11, 5679.	3.2	12
17	Performance of Carbon Fibers with Various Coatings in Composite Lithium-Ion Structural Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
18	Multifunctional Performance of Sodiated Carbon Fibers. Journal of the Electrochemical Society, 2018, 165, 8616-8622.	2.9	16

#	Article	IF	CITATIONS
19	Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries. Composites Science and Technology, 2018, 168, 81-87.	7.8	96
20	Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes. Multifunctional Materials, 2018, 1, 015003.	3.7	65
21	Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries. Composites Science and Technology, 2018, 162, 235-243.	7.8	87
22	Lignin Based Electrospun Carbon Fibers in Sodium Ion Batteries, Oral Presentation. ECS Meeting Abstracts, 2018, , .	0.0	0
23	Sodiated Carbon Fibres for Use in Future Multifunctional Structures. ECS Meeting Abstracts, 2018, MA2018-01, 1986-1986.	0.0	Ο
24	Cost and weight efficient partitioning of composite automotive structures. Polymer Composites, 2017, 38, 2174-2181.	4.6	15
25	A model to analyse deformations and stresses in structural batteries due to electrode expansions. Composite Structures, 2017, 179, 580-589.	5.8	31
26	Structural lithium ion battery electrolytes <i>via</i> reaction induced phase-separation. Journal of Materials Chemistry A, 2017, 5, 25652-25659.	10.3	96
27	Draping simulation-supported framework for cost- and weight- effective composite design. International Journal of Automotive Composites, 2017, 3, 1.	0.1	1
28	Impact response of ductile self-reinforced composite corrugated sandwich beams. Composites Part B: Engineering, 2016, 99, 121-131.	12.0	40
29	Bending energy absorption of self-reinforced poly(ethylene terephthalate) composite sandwich beams. Composite Structures, 2016, 140, 582-589.	5.8	30
30	Method for the cost-efficient and weight-efficient material diversity and partitioning of a carbon fibre composite body structure. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, 230, 49-60.	1.9	5
31	Compression properties of novel thermoplastic carbon fibre and poly-ethylene terephthalate fibre composite lattice structures. Materials & Design, 2015, 65, 1110-1120.	5.1	55
32	Dynamic compression response of self-reinforced poly(ethylene terephthalate) composites and corrugated sandwich cores. Composites Part A: Applied Science and Manufacturing, 2015, 77, 96-105.	7.6	37
33	A material selection approach to evaluate material substitution for minimizing the life cycle environmental impact of vehicles. Materials and Design, 2015, 83, 704-712.	7.0	57
34	Piezo-Electrochemical Energy Harvesting with Lithium-Intercalating Carbon Fibers. ACS Applied Materials & Interfaces, 2015, 7, 13898-13904.	8.0	49
35	Effects of manufacturing constraints on the cost and weight efficiency of integral and differential automotive composite structures. Composite Structures, 2015, 134, 572-578.	5.8	21
36	Integral versus differential design for high-volume manufacturing of composite structures. Journal of Composite Materials, 2015, 49, 2897-2908.	2.4	7

#	Article	IF	CITATIONS
37	Residual strength of GRP laminates with multiple randomly distributed fragment impacts. Composites Part A: Applied Science and Manufacturing, 2014, 60, 66-74.	7.6	8
38	The effect of lithium-intercalation on the mechanical properties of carbon fibres. Carbon, 2014, 68, 725-733.	10.3	66
39	Multi-objective optimisation of vehicle bodies made of FRP sandwich structures. Composite Structures, 2014, 111, 75-84.	5.8	36
40	Piezo-electrochemical effect in lithium-intercalated carbon fibres. Electrochemistry Communications, 2013, 35, 65-67.	4.7	34
41	Expansion of carbon fibres induced by lithium intercalation for structural electrode applications. Carbon, 2013, 59, 246-254.	10.3	71
42	Simple and efficient prediction of bearing failure in single shear, composite lap joints. Composite Structures, 2013, 105, 35-44.	5.8	26
43	Compression and tensile properties of self-reinforced poly(ethylene terephthalate)-composites. Polymer Testing, 2013, 32, 221-230.	4.8	40
44	Impact of carbon fibre/epoxy corrugated cores. Composite Structures, 2012, 94, 3300-3308.	5.8	19
45	Impact of electrochemical cycling on the tensile properties of carbon fibres for structural lithium-ion composite batteries. Composites Science and Technology, 2012, 72, 792-798.	7.8	84
46	Failure mode shifts during constant amplitude fatigue loading of GFRP/foam core sandwich beams. International Journal of Fatigue, 2011, 33, 217-222.	5.7	44
47	Failure mechanisms in composite panels subjected to underwater impulsive loads. Journal of the Mechanics and Physics of Solids, 2011, 59, 1623-1646.	4.8	84
48	PAN-Based Carbon Fiber Negative Electrodes for Structural Lithium-Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A1455.	2.9	140
49	Material Selection for a Curved C-Spar Based on Cost Optimization. Journal of Aircraft, 2011, 48, 797-804.	2.4	7
50	Integrated cost/weight optimization of aircraft structures. Structural and Multidisciplinary Optimization, 2010, 41, 325-334.	3.5	59
51	Testing and analysis of ultra thick composites. Composites Part B: Engineering, 2010, 41, 326-336.	12.0	40
52	Tensile strength of UD-composite laminates with multiple holes. Composites Science and Technology, 2010, 70, 1280-1287.	7.8	18
53	Buckling of laser-welded sandwich panels: Ultimate strength and experiments. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2010, 224, 29-45.	0.5	5
54	Cost/weight optimization of composite prepreg structures for best draping strategy. Composites Part A: Applied Science and Manufacturing, 2010, 41, 464-472.	7.6	23

#	Article	IF	CITATIONS
55	Manufacturing process adaptation for integrated cost/weight optimisation of aircraft structures. Plastics, Rubber and Composites, 2009, 38, 162-166.	2.0	9
56	Corrugated all-composite sandwich structures. Part 2: Failure mechanisms and experimental programme. Composites Science and Technology, 2009, 69, 920-925.	7.8	102
57	Tension, compression and shear fatigue of a closed cell polymer foam. Composites Science and Technology, 2009, 69, 785-792.	7.8	87
58	Notch and strain rate sensitivity of non-crimp fabric composites. Composites Science and Technology, 2009, 69, 793-800.	7.8	20
59	Corrugated all-composite sandwich structures. Part 1: Modeling. Composites Science and Technology, 2009, 69, 913-919.	7.8	112
60	Cost optimization of composite aircraft structures including variable laminate qualities. Composites Science and Technology, 2008, 68, 2748-2754.	7.8	46
61	Analysis of Three-Dimensional Quadratic Failure Criteria for Thick Composites using the Direct Micromechanics Method. Journal of Composite Materials, 2008, 42, 635-654.	2.4	15
62	Fatigue of Closed Cell Foams. Journal of Sandwich Structures and Materials, 2006, 8, 517-538.	3.5	41
63	Buckling of laser-welded sandwich panels. Part 1: Elastic buckling parallel to the webs. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2006, 220, 67-79.	0.5	5
64	Buckling of laser-welded sandwich panels. Part 2: Elastic buckling normal to the webs. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2006, 220, 81-94.	0.5	8
65	Indentation study of foam core sandwich composite panels. Composite Structures, 2005, 69, 95-102.	5.8	150
66	Damage tolerance assessment of composite sandwich panels with localised damage. Composites Science and Technology, 2005, 65, 2597-2611.	7.8	94
67	Compression-after-Impact Strength of Sandwich Panels with Core Crushing Damage. Applied Composite Materials, 2005, 12, 149-164.	2.5	81
68	Imperfection-induced Wrinkling Material Failure in Sandwich Panels. Journal of Sandwich Structures and Materials, 2005, 7, 195-219.	3.5	26
69	Effects of Anisotropy and Multiaxial Loading on the Wrinkling of Sandwich Panels. Journal of Sandwich Structures and Materials, 2005, 7, 177-194.	3.5	24
70	Fatigue of Closed Cell Foams. , 2005, , 171-181.		1
71	Static indentation and unloading response of sandwich beams. Composites Part B: Engineering, 2004, 35, 511-522.	12.0	66
72	Failure Mechanisms and Modelling of Impact Damage in Sandwich Beams - A 2D Approach: Part II - Analysis and Modelling. Journal of Sandwich Structures and Materials, 2003, 5, 33-51.	3.5	30

#	Article	IF	CITATIONS
73	Failure Mechanisms and Modelling of Impact Damage in Sandwich Beams - A 2D Approach: Part I - Experimental Investigation. Journal of Sandwich Structures and Materials, 2003, 5, 7-31.	3.5	68
74	Fatigue Behavior of Foam Core Sandwich Beams with Sub-Interface Impact Damage. Journal of Sandwich Structures and Materials, 2003, 5, 147-160.	3.5	11
75	Fatigue of Undamaged and Damaged Honeycomb Sandwich Beams. Journal of Sandwich Structures and Materials, 2000, 2, 50-74.	3.5	24
76	On Mode I Fatigue Crack Growth in Foam Core Materials for Sandwich Structures. Journal of Sandwich Structures and Materials, 2000, 2, 103-116.	3.5	22
77	Testing of Sandwich Panels Under Uniform Pressure. Journal of Testing and Evaluation, 1998, 26, 101-108.	0.7	7
78	FRACTURE INITIATION IN FOAM-CORE SANDWICH STRUCTURES DUE TO SINGULAR STRESSES AT CORNERS OF FLAWED BUTT JOINTS. Mechanics of Advanced Materials and Structures, 1997, 4, 1-21.	2.6	17
79	Fatigue of foam core sandwich beams—2: effect of initial damage. International Journal of Fatigue, 1997, 19, 563-578.	5.7	87
80	Fatigue of foam core sandwich beams—1: undamaged specimens. International Journal of Fatigue, 1997, 19, 551-561.	5.7	143
81	A test specimen with constant stress intensity factor for prescribed displacement. International Journal of Fracture, 1993, 61, 173-181.	2.2	1
82	Effect of Manufacture-Induced Flaws on the Strength of Foam Core Sandwich Beams. , 1992, , 137-151.		5
83	Strength of sandwich beams with interface debondings. Composite Structures, 1991, 17, 331-350.	5.8	70
84	Strength of sandwich beams with mid-plane debondings in the core. Composite Structures, 1990, 15, 279-299.	5.8	31
85	Fracture of Defect Foam Core Sandwich Beams. Journal of Testing and Evaluation, 1990, 18, 390-395.	0.7	7
86	Poly(vinyl chloride) sandwich core materials: Fracture behaviour under mode II loading and mixed-mode conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 108, 233-240.	5.6	35
87	DP-Sandwich—The utilization of thin high-strength steel sheets in compression. Thin-Walled Structures, 1989, 7, 99-117.	5.3	2
88	PVC sandwich core materials: Mode I fracture toughness. Composites Science and Technology, 1989, 34, 225-242.	7.8	47