Moises Mallo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7058224/publications.pdf

Version: 2024-02-01

147801 138484 4,345 61 31 58 h-index citations g-index papers 72 72 72 5064 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Epha1 is a cell-surface marker for the neuromesodermal competent population. Development (Cambridge), 2022, 149 , .	2.5	3
2	The X-linked splicing regulator MBNL3 has been co-opted to restrict placental growth in eutherians. PLoS Biology, 2022, 20, e3001615.	5.6	4
3	Assessing <i>Myf5</i> and <i>Lbx1</i> contribution to carapace development by reproducing their turtleâ€specific signatures in mouse embryos. Developmental Dynamics, 2022, 251, 1698-1710.	1.8	2
4	Isolated Incudostapedial Cholesteatomas: Unique Radiologic and Surgical Features. Ear, Nose and Throat Journal, 2021, 100, 243S-248S.	0.8	0
5	Three and Four-Dimensional Visualization and Analysis Approaches to Study Vertebrate Axial Elongation and Segmentation. Journal of Visualized Experiments, 2021, , .	0.3	1
6	Of Necks, Trunks and Tails: Axial Skeletal Diversity among Vertebrates. Diversity, 2021, 13, 289.	1.7	7
7	The vertebrate tail: a gene playground for evolution. Cellular and Molecular Life Sciences, 2020, 77, 1021-1030.	5.4	25
8	A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation. ELife, 2020, 9, .	6.0	34
9	Two CRISPR/Cas9-mediated methods for targeting complex insertions, deletions, or replacements in mouse. MethodsX, 2019, 6, 2088-2100.	1.6	4
10	Tail Bud Progenitor Activity Relies on a Network Comprising Gdf11, Lin28, and Hox13 Genes. Developmental Cell, 2019, 48, 383-395.e8.	7.0	82
11	Reassessing the Role of Hox Genes during Vertebrate Development and Evolution. Trends in Genetics, 2018, 34, 209-217.	6.7	100
12	Regulatory landscape of the Hox transcriptome. International Journal of Developmental Biology, 2018, 62, 693-704.	0.6	14
13	Deconstructing the molecular mechanisms shaping the vertebrate body plan. Current Opinion in Cell Biology, 2018, 55, 81-86.	5.4	26
14	A tissue-specific, Gata6-driven transcriptional program instructs remodeling of the mature arterial tree. ELife, 2017, 6, .	6.0	13
15	The Axial Musculoskeletal System. , 2016, , 165-175.		2
16	Reorganisation of Hoxd regulatory landscapes during the evolution of a snake-like body plan. ELife, 2016, 5, .	6.0	29
17	Revisiting the involvement of signaling gradients in somitogenesis. FEBS Journal, 2016, 283, 1430-1437.	4.7	16
18	Oct4 Is a Key Regulator of Vertebrate Trunk Length Diversity. Developmental Cell, 2016, 38, 262-274.	7.0	65

#	Article	IF	Citations
19	Hoxb6 can interfere with somitogenesis in the posterior embryo through a mechanism independent of its rib-promoting activity. Development (Cambridge), 2015, 143, 437-48.	2.5	25
20	Controlling Hox gene expression and activity to build the vertebrate axial skeleton. Developmental Dynamics, 2014, 243, 24-36.	1.8	39
21	Compartment-dependent activities of Wnt3a/ \hat{l}^2 -catenin signaling during vertebrate axial extension. Developmental Biology, 2014, 394, 253-263.	2.0	36
22	Evolving Locomotion with Hoxc9. Developmental Cell, 2014, 29, 130-131.	7.0	3
23	Long bone development requires a threshold of Hox function. Developmental Biology, 2014, 392, 454-465.	2.0	22
24	The regulation of Hox gene expression during animal development. Development (Cambridge), 2013, 140, 3951-3963.	2.5	282
25	Switching Axial Progenitors from Producing Trunk to Tail Tissues in Vertebrate Embryos. Developmental Cell, 2013, 25, 451-462.	7.0	89
26	Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10682-10686.	7.1	90
27	Regulatory role for a conserved motif adjacent to the homeodomain of Hox10 proteins. Development (Cambridge), 2012, 139, 2703-2710.	2.5	13
28	Concerted involvement of $Cdx < i > / < / i > Hox$ genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone. Development (Cambridge), 2011, 138, 3451-3462.	2.5	72
29	Transient Activation of Meox1 Is an Early Component of the Gene Regulatory Network Downstream of Hoxa2. Molecular and Cellular Biology, 2011, 31, 1301-1308.	2.3	20
30	Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone. Development (Cambridge), 2011, 138, 3859-3859.	2.5	7
31	Evidence for a Myotomal Hox/Myf Cascade Governing Nonautonomous Control of Rib Specification within Global Vertebral Domains. Developmental Cell, 2010, 18, 655-661.	7.0	80
32	Hox genes and regional patterning of the vertebrate body plan. Developmental Biology, 2010, 344, 7-15.	2.0	462
33	The road to the vertebral formula. International Journal of Developmental Biology, 2009, 53, 1469-1481.	0.6	51
34	Cdx and Hox Genes Differentially Regulate Posterior Axial Growth in Mammalian Embryos. Developmental Cell, 2009, 17, 516-526.	7.0	225
35	HOXB4's road map to stem cell expansion. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16952-16957.	7.1	82
36	And the segmentation clock keeps ticking. BioEssays, 2007, 29, 412-415.	2.5	0

#	Article	IF	Citations
37	<i>Bmp2</i> is required for migration but not for induction of neural crest cells in the mouse. Developmental Dynamics, 2007, 236, 2493-2501.	1.8	52
38	Controlled gene activation and inactivation in the mouse. Frontiers in Bioscience - Landmark, 2006, 11, 313.	3.0	43
39	Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Developmental Biology, 2006, 291, 382-397.	2.0	148
40	A Novel Possible Mechanism for the Genesis of Genomic Duplications and Its Experimental Test. Journal of Molecular Evolution, 2005, 61, 390-397.	1.8	1
41	Hox genes specify vertebral types in the presomitic mesoderm. Genes and Development, 2005, 19, 2116-2121.	5.9	186
42	Hoxa2 downregulates Six2 in the neural crest-derived mesenchyme. Development (Cambridge), 2005, 132, 469-478.	2.5	40
43	Tbx1 is required for proper neural crest migration and to stabilize spatial patterns during middle and inner ear development. Mechanisms of Development, 2005, 122, 199-212.	1.7	65
44	Reversible gene inactivation in the mouse. Genomics, 2003, 81, 356-360.	2.9	26
45	Mesenchymal patterning by Hoxa2 requires blocking Fgf-dependent activation of Ptx1. Development (Cambridge), 2003, 130, 3403-3414.	2.5	40
46	Formation of the Outer and Middle Ear, Molecular Mechanisms. Current Topics in Developmental Biology, 2003, 57, 85-113.	2.2	44
47	Nuclear factor I-B (Nfib) deficient mice have severe lung hypoplasia. Mechanisms of Development, 2002, 112, 69-77.	1.7	93
48	Aortic arch and pharyngeal phenotype in the absence of BMP-dependent neural crest in the mouse. Mechanisms of Development, 2002, 119, 127-135.	1.7	46
49	Formation of the Middle Ear: Recent Progress on the Developmental and Molecular Mechanisms. Developmental Biology, 2001, 231, 410-419.	2.0	109
50	Different levels of Hoxa2 are required for particular developmental processes. Mechanisms of Development, 2001, 108, 135-147.	1.7	33
51	Direct stimulation of macrophages by IL-12 and IL-18 — a bridge built on solid ground. Immunology Letters, 2001, 75, 159-160.	2.5	22
52	Murine Macrophages Secrete Interferon \hat{I}^3 upon Combined Stimulation with Interleukin (IL)-12 and IL-18: A Novel Pathway of Autocrine Macrophage Activation. Journal of Experimental Medicine, 1998, 187, 2103-2108.	8.5	542
53	Retinoic Acid Disturbs Mouse Middle Ear Development in a Stage-Dependent Fashion. Developmental Biology, 1997, 184, 175-186.	2.0	63
54	Segmental identity can change independently in the hindbrain and rhombencephalic neural crest., 1997, 210, 146-156.		53

#	Article	IF	CITATION
55	Intracellular posttranslational modifications of S1133 avian reovirus proteins. Journal of Virology, 1996, 70, 2974-2981.	3.4	48
56	Protein characterization and targeted disruption of Grg, a mouse gene related to the groucho transcript of the Drosophila enhancer of split complex. Developmental Dynamics, 1995, 204, 338-347.	1.8	29
57	Genomic Organization, Alternative Polyadenylation, and Chromosomal Localization of Grg, a Mouse Gene Related to the groucho Transcript of the Drosophila Enhancer of split Complex. Genomics, 1994, 21, 194-201.	2.9	19
58	Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell, 1993, 75, 1317-1331.	28.9	526
59	Cloning and developmental expression of Grg, a mouse gene related to the groucho transcript of the Drosophila Enhancer of split complex. Mechanisms of Development, 1993, 42, 67-76.	1.7	60
60	Avian reovirus S1133 can replicate in mouse L cells: effect of pH and cell attachment status on viral infection. Journal of Virology, 1991, 65, 5499-5505.	3.4	11
61	The stimulatory effect of actinomycin D on avian reovirus replication in L cells suggests that translational competition dictates the fate of the infection. Journal of Virology, 1991, 65, 5506-5512.	3.4	4