Melinda A Engevik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7057696/publications.pdf

Version: 2024-02-01

106	2,218	27 h-index	43
papers	citations		g-index
110	110	110	2558
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Maternal <i>Lactobacillus reuteri</i> supplementation shifts the intestinal microbiome in mice and provides protection from experimental colitis in female offspring. FASEB BioAdvances, 2022, 4, 109-120.	2.4	9
2	Loss of H2R Signaling Disrupts Neutrophil Homeostasis and Promotes Inflammation-Associated Colonic Tumorigenesis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 717-737.	4.5	0
3	<i>KLEBSIELLA PNEUMONIAE</i> IN THE COLONIC MUCUS LAYER INFLUENCES <i>CLOSTRIDIODES DIFFICILE</i> PATHOGENESIS. Inflammatory Bowel Diseases, 2022, 28, S69-S69.	1.9	o
4	KLEBSIELLA PNEUMONIAE IN THE COLONIC MUCUS LAYER INFLUENCES CLOSTRIDIODES DIFFICILE PATHOGENESIS. Gastroenterology, 2022, 162, S69.	1.3	1
5	Select Streptococci Can Degrade <i>Candida</i> Mannan To Facilitate Growth. Applied and Environmental Microbiology, 2022, 88, aem0223721.	3.1	3
6	Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters. IScience, 2022, 25, 104158.	4.1	41
7	Identifying single-strain growth patterns of human gut microbes in response to preterm human milk and formula. Food and Function, 2022, 13, 5571-5589.	4.6	3
8	Using targeted LCâ€MS/MSâ€based metabolomics to measure a broad constellation of bile acids/salts in disorders of human health. FASEB Journal, 2022, 36, .	0.5	0
9	<i>Klebsiella pneumoniae</i> utilizes intestinal mucus to increase fitness in the gastrointestinal tract. FASEB Journal, 2022, 36, .	0.5	О
10	<i>Klebsiella pneumoniae</i> Crossâ€feeds <i>Clostridioides difficile</i> and Enhances Colonic Proâ€inflammatory Responses. FASEB Journal, 2022, 36, .	0.5	0
11	Salivary Microbiota is Associated with Cannabis Use in Adolescents. FASEB Journal, 2022, 36, .	0.5	0
12	Exploring new bacterialâ€fungal interactions: the role of mannan degradation in Streptococci growth. FASEB Journal, 2022, 36, .	0.5	0
13	Loss of Myosin Vb leads to dysregulation of colonic goblet cell structure and function. FASEB Journal, 2022, 36, .	0.5	О
14	Characterizing the mucin-degrading capacity of the human gut microbiota. Scientific Reports, 2022, 12, 8456.	3.3	86
15	Acinetobacter calcoaceticus is Well Adapted to Withstand Intestinal Stressors and Modulate the Gut Epithelium. Frontiers in Physiology, 2022, 13, .	2.8	10
16	Therapeutic Opportunities for Intestinal Angioectasia―Targeting PPARγ and Oxidative Stress. Clinical and Translational Science, 2021, 14, 518-528.	3.1	6
17	Fusobacterium nucleatum Adheres to Clostridioides difficile via the RadD Adhesin to Enhance Biofilm Formation in Intestinal Mucus. Gastroenterology, 2021, 160, 1301-1314.e8.	1.3	46
18	Mucin-Degrading Microbes Release Monosaccharides That Chemoattract $\langle i \rangle$ Clostridioides difficile $\langle i \rangle$ and Facilitate Colonization of the Human Intestinal Mucus Layer. ACS Infectious Diseases, 2021, 7, 1126-1142.	3.8	39

#	Article	IF	CITATIONS
19	Human-Derived Bifidobacterium dentium Modulates the Mammalian Serotonergic System and Gut–Brain Axis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 221-248.	4.5	73
20	<i>Bifidobacterium dentium</i> -derived y-glutamylcysteine suppresses ER-mediated goblet cell stress and reduces TNBS-driven colonic inflammation. Gut Microbes, 2021, 13, 1-21.	9.8	41
21	Immunomodulation of dendritic cells by <i>Lactobacillus reuteri</i> surface components and metabolites. Physiological Reports, 2021, 9, e14719.	1.7	37
22	Exploring the impact of intestinal ion transport on the gut microbiota. Computational and Structural Biotechnology Journal, 2021, 19, 134-144.	4.1	19
23	Partners in Infectious Disease: When Microbes Facilitate Enteric Viral Infections. Gastroenterology Insights, 2021, 12, 41-55.	1.2	1
24	STOCHASTIC INTERINDIVIDUAL MICROBIOME VARIATION MAY GUIDE PROTECTIVE PERINATAL PROBIOTIC DEVELOPMENT AGAINST IBD. Gastroenterology, 2021, 160, S5.	1.3	0
25	EXPLORING CO-INFECTIONS IN THE GASTROINTESTINAL TRACT: DISSECTING THE INTERACTION BETWEEN FUSOBACTERIUM NUCLEATUM AND CLOSTRIDIODES DIFFICILE. Gastroenterology, 2021, 160, S54-S55.	1.3	0
26	Bacteroides ovatus Promotes IL-22 Production and Reduces Trinitrobenzene Sulfonic Acid–Driven Colonic Inflammation. American Journal of Pathology, 2021, 191, 704-719.	3.8	39
27	$\mbox{\sc i}\mbox{\sc Fusobacterium}$ nucleatum $\mbox{\sc i}\mbox{\sc Secretes}$ Outer Membrane Vesicles and Promotes Intestinal Inflammation. MBio, 2021, 12, .	4.1	101
28	The metabolic profile of Bifidobacterium dentium reflects its status as a human gut commensal. BMC Microbiology, 2021, 21, 154.	3.3	13
29	Clostridioides difficile is Chemoattracted to Oligosaccharides Released by Mucin―Degrading Microbes. FASEB Journal, 2021, 35, .	0.5	0
30	Bacteroides ovatus Influences the Levels of Intestinal Neurotransmitters in a Gnotobiotic Model. FASEB Journal, 2021, 35, .	0.5	0
31	Exploring the interaction between rotavirus and <i>Lactobacillus</i> . FASEB Journal, 2021, 35, .	0.5	0
32	358 AMELIORATION OF GOBLET CELL ER-STRESS BY BIFIDOBACTERIUM DENTIUM METABOLITES. Gastroenterology, 2021, 160, S-68.	1.3	0
33	Development of a highâ€throughput method for examining bacterial supernatant pH using ratiometric UVâ€VIS spectrophotometry. FASEB Journal, 2021, 35, .	0.5	0
34	Neurotransmitter Profiles Are Altered in the Gut and Brain of Mice Mono-Associated with Bifidobacterium dentium. Biomolecules, 2021, 11, 1091.	4.0	17
35	Limosilactobacillus reuteri ATCC 6475 metabolites upregulate the serotonin transporter in the intestinal epithelium. Beneficial Microbes, 2021, 12, 583-599.	2.4	10
36	STOCHASTIC INTERINDIVIDUAL MICROBIOME VARIATION MAY GUIDE PROTECTIVE PERINATAL PROBIOTIC DEVELOPMENT AGAINST IBD. Inflammatory Bowel Diseases, 2021, 27, S4-S4.	1.9	0

#	Article	IF	CITATIONS
37	EXPLORING CO-INFECTIONS IN THE GASTROINTESTINAL TRACT: DISSECTING THE INTERACTION BETWEEN FUSOBACTERIUM NUCLEATUM AND CLOSTRIDIODES DIFFICILE. Inflammatory Bowel Diseases, 2021, 27, S40-S40.	1.9	O
38	Enhancing Microbiome Research through Genome-Scale Metabolic Modeling. MSystems, 2021, 6, e0059921.	3.8	15
39	Unraveling the Metabolic Requirements of the Gut Commensal Bacteroides ovatus. Frontiers in Microbiology, 2021, 12, 745469.	3.5	12
40	P071 MODULATION OF THE MUCUS LAYER BY BIFIDOBACTERIUM DENTIUM PROVIDES PROTECTION IN A MODEL OF COLITIS. Gastroenterology, 2020, 158, S61-S62.	1.3	1
41	Rotavirus induces intercellular calcium waves through ADP signaling. Science, 2020, 370, .	12.6	44
42	20 ELUCIDATING THE ROLE OF FUSOBACTERIUM NUCLEATUM IN INTESTINAL INFLAMMATION. Gastroenterology, 2020, 158, S46-S47.	1.3	0
43	P071 MODULATION OF THE MUCUS LAYER BY BIFIDOBACTERIUM DENTIUM PROVIDES PROTECTION IN A MODEL OF COLITIS. Inflammatory Bowel Diseases, 2020, 26, S38-S38.	1.9	0
44	1024 FUSOBACTERIUM NUCLEATUM SECRETES OUTER MEMBRANE VESICLES AND PROMOTES INTESTINAL INFLAMMATION. Gastroenterology, 2020, 158, S-205.	1.3	0
45	Changes in Pediatric Endoscopic Practice During the Coronavirus Disease 2019 Pandemic: Results From an International Survey. Gastroenterology, 2020, 159, 1547-1550.	1.3	12
46	Reuterin disrupts <i>Clostridioides difficile</i> metabolism and pathogenicity through reactive oxygen species generation. Gut Microbes, 2020, 12, 1795388.	9.8	23
47	Maternal diet alters human milk oligosaccharide composition with implications for the milk metagenome. Scientific Reports, 2020, 10, 22092.	3.3	81
48	7 LACTOBACILLUS REUTERI SUPPRESSES PRO-INFLAMMATORY DRIVEN REACTIVE OXYGEN SPECIES IN VITRO IN HUMAN INTESTINAL EPITHELIAL CELLS AND IN VIVO IN A TNBS COLITIS MOUSE MODEL. Inflammatory Bowel Diseases, 2020, 26, S41-S41.	1.9	2
49	479 PRO-INFLAMMATORY DRIVEN REACTIVE OXYGEN SPECIES IS SUPPRESSED BY LACTOBACILLUS REUTERI IN VITRO IN HUMAN INTESTINAL EPITHELIAL CELLS AND IN VIVO IN MOUSE COLITIS MODELS. Gastroenterology, 2020, 158, S-93.	1.3	O
50	Sa1901 B. OVATUS THERAPY UPREGULATES IL-22-MEDIATED SUPPRESSION OF INFLAMMATION DURING MURINE COLITIS. Gastroenterology, 2020, 158, S-472.	1.3	0
51	Enhancing responsiveness of human jejunal enteroids to host and microbial stimuli. Journal of Physiology, 2020, 598, 3085-3105.	2.9	17
52	Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function. Scientific Reports, 2020, 10, 7737.	3.3	66
53	Rotavirus infection induces glycan availability to promote ileum-specific changes in the microbiome aiding rotavirus virulence. Gut Microbes, 2020, 11, 1324-1347.	9.8	43
54	20 ELUCIDATING THE ROLE OF FUSOBACTERIUM NUCLEATUM IN INTESTINAL INFLAMMATION. Inflammatory Bowel Diseases, 2020, 26, S29-S29.	1.9	2

#	Article	IF	CITATIONS
55	Editing Myosin VB Gene to Create Porcine Model of Microvillus Inclusion Disease, With Microvillus-Lined Inclusions and Alterations in Sodium Transporters. Gastroenterology, 2020, 158, 2236-2249.e9.	1.3	25
56	Healthy Human Gastrointestinal Microbiome: Composition and Function After a Decade of Exploration. Digestive Diseases and Sciences, 2020, 65, 695-705.	2.3	104
57	Human intestinal enteroids as a model of <i>Clostridioides difficile </i> Journal of Physiology - Renal Physiology, 2020, 318, G870-G888.	3.4	23
58	Elucidating the Role of Purinergic and Calcium Signaling During Rotavirus Infection. FASEB Journal, 2020, 34, 1-1.	0.5	0
59	1142 MICROBIAL DEGRADATION OF ILEAL MUCUS PROMOTES ROTAVIRUS INFECTION. Gastroenterology, 2020, 158, S-226-S-227.	1.3	O
60	7 LACTOBACILLUS REUTERI SUPPRESSES PRO-INFLAMMATORY DRIVEN REACTIVE OXYGEN SPECIES IN VITRO IN HUMAN INTESTINAL EPITHELIAL CELLS AND IN VIVO IN A TNBS COLITIS MOUSE MODEL. Gastroenterology, 2020, 158, S67.	1.3	0
61	Humanâ€derived Bifidobacterium dentium Metabolites Modulate the Mammalian Serotonergic System. FASEB Journal, 2020, 34, 1-1.	0.5	O
62	Characterizing mucusâ€based biofilms in human Clostridium difficile infection. FASEB Journal, 2020, 34, 1-1.	0.5	0
63	Dysregulation of Endogenous and Paracrine Calcium Signaling Pathways by Rotaviruses and Caliciviruses. FASEB Journal, 2020, 34, 1-1.	0.5	O
64	Phagocytosis by macrophages depends on histamine H2 receptor signaling and scavenger receptor 1. MicrobiologyOpen, 2019, 8, e908.	3.0	11
65	Human Intestinal Enteroids With Inducible Neurogenin-3 Expression as a Novel Model of Gut Hormone Secretion. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 209-229.	4. 5	60
66	419 – Lactobacillus Reuteri Secretes Γ-Glutamylcysteine to Suppress Pro-Inflammatory Driven Reactive Oxygen Species in Human Intestinal Enteroids. Gastroenterology, 2019, 156, S-82.	1.3	0
67	Su1042 – Human Cytokine Production by the Intact Intestinal Epithelium in Response to Human and Bacterial Signals. Gastroenterology, 2019, 156, S-492-S-493.	1.3	O
68	Microbial Metabolic Capacity for Intestinal Folate Production and Modulation of Host Folate Receptors. Frontiers in Microbiology, 2019, 10, 2305.	3.5	95
69	Taking a Closer Look at the Biogeography of the Human Gastrointestinal Microbiome. Gastroenterology, 2019, 157, 927-929.	1.3	5
70	<i>Bacteroides ovatus</i> ATCC 8483 monotherapy is superior to traditional fecal transplant and multi-strain bacteriotherapy in a murine colitis model. Gut Microbes, 2019, 10, 504-520.	9.8	59
71	Bifidobacterium dentium Fortifies the Intestinal Mucus Layer via Autophagy and Calcium Signaling Pathways. MBio, 2019, 10, .	4.1	141
72	CIC transporter activity modulates histidine catabolism in Lactobacillus reuteri by altering intracellular pH and membrane potential. Microbial Cell Factories, 2019, 18, 212.	4.0	6

#	Article	IF	CITATIONS
73	939: Human milk oligosaccharides (HMOs) promote growth of commensal Streptococcus spp. abundant in human milk. American Journal of Obstetrics and Gynecology, 2019, 220, S605-S606.	1.3	3
74	Distinct roles of histamine H1- and H2-receptor signaling pathways in inflammation-associated colonic tumorigenesis. American Journal of Physiology - Renal Physiology, 2019, 316, G205-G216.	3.4	35
75	Rotavirus Infection Activates Intercellular Calcium Waves through Purinergic Signaling. FASEB Journal, 2019, 33, 869.25.	0.5	0
76	757 - Rotavirus Infection Induces Intercellular Calcium Waves Through Purinergic Signaling. Gastroenterology, 2018, 154, S-160-S-161.	1.3	0
77	Loss of MYO5B Leads to Reductions in Na+ Absorption With Maintenance of CFTR-Dependent Cl– Secretion in Enterocytes. Gastroenterology, 2018, 155, 1883-1897.e10.	1.3	45
78	Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology., 2018, , 1-47.		0
79	907 - Deficits in Apical Sodium and Water Transporters Along with Maintenance of CFTR Account for Diarrheal Pathology in MYO5B Ko Mice and Patients with MVID. Gastroenterology, 2018, 154, S-179.	1.3	3
80	26 - Fusobacterium Nucleatum Bolsters Clostridium Difficile Biofilms in Intestinal Mucus. Gastroenterology, 2018, 154, S-9.	1.3	0
81	Tu1847 - Bacteroides Ovatus Monotherapy is Sufficient to Suppress Intestinal Inflammation in a Murine Colitis Model. Gastroenterology, 2018, 154, S-1036-S-1037.	1.3	0
82	<i>Clostridium difficile</i> toxins A and B decrease intestinal SLC26A3 protein expression. American Journal of Physiology - Renal Physiology, 2018, 315, G43-G52.	3.4	12
83	Postnatal colonization with human "infant-type" Bifidobacterium species alters behavior of adult gnotobiotic mice. PLoS ONE, 2018, 13, e0196510.	2.5	66
84	1057 - Bifidobacterium Dentium Increases Muc2 Synthesis and Activates Autophagy to Promote Mucin Release. Gastroenterology, 2018, 154, S-200.	1.3	1
85	LIMITING THE TOXICITY OF CHEMOTHERAPY BY ENHANCING REGENERATION OF INTESTINAL STEM CELLS. FASEB Journal, 2018, 32, 872.2.	0.5	0
86	Live Cell Fluorescence Imaging Reveals Intercellular Calcium Waves and Chloride Channel Activation During Rotavirus Infection. FASEB Journal, 2018, 32, 613.1.	0.5	1
87	Secreted Factors from Lactobacillus Reuteri Suppress Epithelial Pro-Inflammatory Cytokines and Upregulate E-Cadherin. Gastroenterology, 2017, 152, S966.	1.3	0
88	850: Oral inflammation leads to greater fetal demise following Fusobacterium nucleatum in a gnotobiotic model of periodontitis. American Journal of Obstetrics and Gynecology, 2017, 216, S487.	1.3	0
89	Decreased Expression of SLC26A3 Protein in a Toxigenic Mouse Model and Patients with Clostridium Difficile Infection. Gastroenterology, 2017, 152, S66.	1.3	0
90	Bifidobacterium Dentium Upregulates Intestinal SERT via the JNK Pathway and Stimulates Serotonin Release. Gastroenterology, 2017, 152, S103-S104.	1.3	3

#	Article	IF	CITATIONS
91	Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. Microbiology Spectrum, 2017, 5, .	3.0	69
92	Intestinal brush-border Na ⁺ /H ⁺ exchanger-3 drives H ⁺ -coupled iron absorption in the mouse. American Journal of Physiology - Renal Physiology, 2016, 311, G423-G430.	3.4	26
93	Su1896 Akkermansia muciniphila Secretory Product Actively Increases Mucus Secretion and Sialylation in Human Goblet-Like Cells. Gastroenterology, 2016, 150, S582.	1.3	3
94	Mo1658 Clostridium difficile Chemotaxes Toward Mucin Glycans, Adheres and Forms Biofilms In Vitro and In Vivo. Gastroenterology, 2016, 150, S745.	1.3	1
95	212: Fusobacterium nucleatum colonizes the placenta after oral inoculation in a gnotobiotic mouse model. American Journal of Obstetrics and Gynecology, 2016, 214, S128.	1.3	0
96	244: Recovery of placental bacteria is facilitated by periodontitis in orally inoculated germ-free mice. American Journal of Obstetrics and Gynecology, 2016, 214, S144.	1.3	1
97	Effects of Circular DNA Length on Transfection Efficiency by Electroporation into HeLa Cells. PLoS ONE, 2016, 11, e0167537.	2.5	53
98	Human <i>Clostridium difficile</i> infection: inhibition of NHE3 and microbiota profile. American Journal of Physiology - Renal Physiology, 2015, 308, G497-G509.	3.4	84
99	Human <i>Clostridium difficile</i> infection: altered mucus production and composition. American Journal of Physiology - Renal Physiology, 2015, 308, G510-G524.	3.4	105
100	Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese. American Journal of Physiology - Renal Physiology, 2015, 309, G635-G647.	3.4	94
101	Modulation and adherence of intestinal mucus by commensal bacteria and the pathogen C. difficile. FASEB Journal, 2015, 29, 1007.4.	0.5	1
102	Acute consumption of a high-fat diet prior to ischemia-reperfusion results in cardioprotection through NF-κB-dependent regulation of autophagic pathways. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1705-H1713.	3.2	29
103	Gastritis Promotes an Activated Bone Marrow-Derived Mesenchymal Stem Cell with a Phenotype Reminiscent of a Cancer-Promoting Cell. Digestive Diseases and Sciences, 2014, 59, 569-582.	2.3	18
104	Loss of NHE3 alters gut microbiota composition and influences <i>Bacteroides thetaiotaomicron</i> growth. American Journal of Physiology - Renal Physiology, 2013, 305, G697-G711.	3.4	87
105	Prebiotic Properties of Galursan HF 7K on Mouse Gut Microbiota. Cellular Physiology and Biochemistry, 2013, 32, 96-110.	1.6	10
106	Acidic Conditions in the NHE2 ^{-/-} Mouse Intestine Result in an Altered Mucosa-Associated Bacterial Population with Changes in Mucus Oligosaccharides. Cellular Physiology and Biochemistry, 2013, 32, 111-128.	1.6	24