Justin Lessler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7057124/publications.pdf

Version: 2024-02-01

204 22,928 59 133
papers citations h-index g-index

257 257 257 33909 all docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Periodic synchronisation of dengue epidemics in Thailand over the last 5 decades driven by temperature and immunity. PLoS Biology, 2022, 20, e3001160.	5.6	8
2	In-person schooling and associated COVID-19 risk in the United States over spring semester 2021. Science Advances, 2022, 8, eabm9128.	10.3	10
3	Collaborative Hubs: Making the Most of Predictive Epidemic Modeling. American Journal of Public Health, 2022, 112, 839-842.	2.7	27
4	Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113561119.	7.1	136
5	The seasonality of cholera in sub-Saharan Africa: a statistical modelling study. The Lancet Global Health, 2022, 10, e831-e839.	6.3	11
6	Effect of non-pharmaceutical interventions in the early phase of the COVID-19 epidemic in Saudi Arabia. PLOS Global Public Health, 2022, 2, e0000237.	1.6	3
7	Why do some coronaviruses become pandemic threats when others do not?. PLoS Biology, 2022, 20, e3001652.	5.6	3
8	Cholera outbreaks in sub-Saharan Africa during 2010-2019: a descriptive analysis. International Journal of Infectious Diseases, 2022, 122, 215-221.	3.3	13
9	An Overlooked Role for Fecal Transmission of Severe Acute Respiratory Syndrome Coronavirus 2?. Clinical Infectious Diseases, 2021, 73, e1803-e1804.	5.8	1
10	Risk Factors for Healthcare Personnel Infection With Endemic Coronaviruses (HKU1, OC43, NL63, 229E): Results from the Respiratory Protection Effectiveness Clinical Trial (ResPECT). Clinical Infectious Diseases, 2021, 73, e4428-e4432.	5.8	17
11	What Now? Epidemiology in the Wake of a Pandemic. American Journal of Epidemiology, 2021, 190, 17-20.	3.4	13
12	Using serological measures to estimate influenza incidence in the presence of secular trends in exposure and immunoâ€modulation of antibody response. Influenza and Other Respiratory Viruses, 2021, 15, 235-244.	3.4	8
13	Estimating the health impact of vaccination against ten pathogens in 98 low-income and middle-income countries from 2000 to 2030: a modelling study. Lancet, The, 2021, 397, 398-408.	13.7	144
14	Insight into the practical performance of RT-PCR testing for SARS-CoV-2 using serological data: a cohort study. Lancet Microbe, The, 2021, 2, e79-e87.	7.3	67
15	Genomic diversity of SARS-CoV-2 during early introduction into the Baltimore–Washington metropolitan area. JCl Insight, 2021, 6, .	5.0	31
16	Maximizing and evaluating the impact of test-trace-isolate programs: A modeling study. PLoS Medicine, 2021, 18, e1003585.	8.4	43
17	Household COVID-19 risk and in-person schooling. Science, 2021, 372, 1092-1097.	12.6	162
18	A scenario modeling pipeline for COVID-19 emergency planning. Scientific Reports, 2021, 11, 7534.	3.3	33

#	Article	IF	CITATIONS
19	Modeling of Future COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Rates and Nonpharmaceutical Intervention Scenarios — United States, April–September 2021. Morbidity and Mortality Weekly Report, 2021, 70, 719-724.	15.1	126
20	Insights into household transmission of SARS-CoV-2 from a population-based serological survey. Nature Communications, 2021, 12, 3643.	12.8	61
21	Regional sequencing collaboration reveals persistence of the T12 Vibrio cholerae O1 lineage in West Africa. ELife, 2021, 10 , .	6.0	6
22	Effect of specific non-pharmaceutical intervention policies on SARS-CoV-2 transmission in the counties of the United States. Nature Communications, 2021, 12, 3560.	12.8	35
23	Sample size calculation for phylogenetic case linkage. PLoS Computational Biology, 2021, 17, e1009182.	3.2	7
24	Lives saved with vaccination for 10 pathogens across 112 countries in a pre-COVID-19 world. ELife, 2021 , 10 , .	6.0	50
25	Clinical Cholera Surveillance Sensitivity in Bangladesh and Implications for Large-Scale Disease Control. Journal of Infectious Diseases, 2021, 224, S725-S731.	4.0	2
26	Prevalence of untreated HIV and associated risk behaviors among the sexual partners of recent migrants and long-term residents in Rakai, Uganda. Journal of Acquired Immune Deficiency Syndromes (1999), 2021, Publish Ahead of Print, 243-251.	2.1	3
27	Challenges in modeling the emergence of novel pathogens. Epidemics, 2021, 37, 100516.	3.0	12
28	Declining HIV incidence in sub‧aharan Africa: a systematic review and metaâ€analysis of empiric data. Journal of the International AIDS Society, 2021, 24, e25818.	3.0	32
29	Analysis of Vaccine Effectiveness Against COVID-19 and the Emergence of Delta and Other Variants of Concern in Utah. JAMA Network Open, 2021, 4, e2140906.	5.9	11
30	Clinical and Epidemiological Aspects of Diphtheria: A Systematic Review and Pooled Analysis. Clinical Infectious Diseases, 2020, 71, 89-97.	5.8	76
31	Surveillance and the global fight against cholera: Setting priorities and tracking progress. Vaccine, 2020, 38, A28-A30.	3.8	12
32	Performance and Priorities: A Cross-sectional Study of Local Health Department Approaches to Essential Public Health Services. Public Health Reports, 2020, 135, 97-106.	2.5	5
33	The engines of SARS-CoV-2 spread. Science, 2020, 370, 406-407.	12.6	100
34	Using Serology to Anticipate Measles Post-honeymoon Period Outbreaks. Trends in Microbiology, 2020, 28, 597-600.	7.7	5
35	The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine, 2020, 172, 577-582.	3.9	4,808
36	Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction–Based SARS-CoV-2 Tests by Time Since Exposure. Annals of Internal Medicine, 2020, 173, 262-267.	3.9	1,202

#	Article	IF	Citations
37	Life course exposures continually shape antibody profiles and risk of seroconversion to influenza. PLoS Pathogens, 2020, 16, e1008635.	4.7	15
38	Achieving coordinated national immunity and cholera elimination in Haiti through vaccination: a modelling study. The Lancet Global Health, 2020, 8, e1081-e1089.	6.3	26
39	A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity. Nature Communications, 2020, 11, 4704.	12.8	775
40	Cholera in Haiti – Authors' reply. The Lancet Global Health, 2020, 8, e1470-e1471.	6.3	0
41	An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver. PLoS Computational Biology, 2020, 16, e1007840.	3.2	13
42	Estimating the burden of SARS-CoV-2 in France. Science, 2020, 369, 208-211.	12.6	880
43	Migration, hotspots, and dispersal of HIV infection in Rakai, Uganda. Nature Communications, 2020, 11, 976.	12.8	34
44	Quantifying HIV transmission flow between high-prevalence hotspots and surrounding communities: a population-based study in Rakai, Uganda. Lancet HIV,the, 2020, 7, e173-e183.	4.7	59
45	Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infectious Diseases, The, 2020, 20, 911-919.	9.1	1,550
46	Vibrio cholerae O1 transmission in Bangladesh: insights from a nationally representative serosurvey. Lancet Microbe, The, 2020, 1, e336-e343.	7.3	27
47	Successive epidemic waves of cholera in South Sudan between 2014 and 2017: a descriptive epidemiological study. Lancet Planetary Health, The, 2020, 4, e577-e587.	11.4	18
48	Title is missing!. , 2020, 16, e1007840.		0
49	Title is missing!. , 2020, 16, e1007840.		0
50	Title is missing!. , 2020, 16, e1007840.		0
51	Title is missing!. , 2020, 16, e1007840.		0
52	Title is missing!. , 2020, 16, e1007840.		0
53	Life course exposures continually shape antibody profiles and risk of seroconversion to influenza., 2020, 16, e1008635.		0
54	Life course exposures continually shape antibody profiles and risk of seroconversion to influenza., 2020, 16, e1008635.		0

#	Article	IF	CITATIONS
55	Life course exposures continually shape antibody profiles and risk of seroconversion to influenza., 2020, 16, e1008635.		O
56	Life course exposures continually shape antibody profiles and risk of seroconversion to influenza., 2020, 16, e1008635.		0
57	The Many Faces of Emerging and Reemerging Infectious Disease. Epidemiologic Reviews, 2019, 41, 1-5.	3.5	5
58	The use of GPS data loggers to describe the impact of spatio-temporal movement patterns on malaria control in a high-transmission area of northern Zambia. International Journal of Health Geographics, 2019, 18, 19.	2.5	22
59	What is Machine Learning? A Primer for the Epidemiologist. American Journal of Epidemiology, 2019, 188, 2222-2239.	3.4	180
60	Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics, 2019, 29, 100356.	3.0	399
61	Differential mobility and local variation in infection attack rate. PLoS Computational Biology, 2019, 15, e1006600.	3.2	9
62	Cholera prevention and control in refugee settings: Successes and continued challenges. PLoS Neglected Tropical Diseases, 2019, 13, e0007347.	3.0	37
63	Perfect counterfactuals for epidemic simulations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180279.	4.0	12
64	The Impact of 3 Years of Targeted Indoor Residual Spraying With Pirimiphos-Methyl on Malaria Parasite Prevalence in a High-Transmission Area of Northern Zambia. American Journal of Epidemiology, 2019, 188, 2120-2130.	3.4	25
65	Measles and the canonical path to elimination. Science, 2019, 364, 584-587.	12.6	35
66	A methodological comparison of risk scores versus decision trees for predicting drug-resistant infections: A case study using extended-spectrum beta-lactamase (ESBL) bacteremia. Infection Control and Hospital Epidemiology, 2019, 40, 400-407.	1.8	26
67	Mapping vaccination coverage to explore the effects of delivery mechanisms and inform vaccination strategies. Nature Communications, 2019, 10, 1633.	12.8	80
68	Estimating cholera incidence with cross-sectional serology. Science Translational Medicine, 2019, 11, .	12.4	50
69	An open challenge to advance probabilistic forecasting for dengue epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24268-24274.	7.1	136
70	The projected impact of geographic targeting of oral cholera vaccination in sub-Saharan Africa: A modeling study. PLoS Medicine, 2019, 16, e1003003.	8.4	23
71	Impacts of Zika emergence in Latin America on endemic dengue transmission. Nature Communications, 2019, 10, 5730.	12.8	48
72	A spatial regression model for the disaggregation of areal unit based data to high-resolution grids with application to vaccination coverage mapping. Statistical Methods in Medical Research, 2019, 28, 3226-3241.	1.5	32

#	Article	IF	Citations
73	Characterizing the impact of spatial clustering of susceptibility for measles elimination. Vaccine, 2019, 37, 732-741.	3.8	54
74	Comparison of US County-Level Public Health Performance Rankings With County Cluster and National Rankings. JAMA Network Open, 2019, 2, e186816.	5.9	14
75	Risk Factors for Household Vector Abundance Using Indoor CDC Light Traps in a High Malaria Transmission Area of Northern Zambia. American Journal of Tropical Medicine and Hygiene, 2019, 101, 126-136.	1.4	14
76	Prospective forecasts of annual dengue hemorrhagic fever incidence in Thailand, 2010–2014. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2175-E2182.	7.1	51
77	Mapping the burden of cholera in sub-Saharan Africa and implications for control: an analysis of data across geographical scales. Lancet, The, 2018, 391, 1908-1915.	13.7	133
78	High resolution age-structured mapping of childhood vaccination coverage in low and middle income countries. Vaccine, 2018, 36, 1583-1591.	3.8	78
79	Quantifying the Risk and Cost of Active Monitoring for Infectious Diseases. Scientific Reports, 2018, 8, 1093.	3.3	17
80	Benefits and Challenges in Using Seroprevalence Data to Inform Models for Measles and Rubella Elimination. Journal of Infectious Diseases, 2018, 218, 355-364.	4.0	57
81	Rubella vaccination in India: identifying broad consequences of vaccine introduction and key knowledge gaps. Epidemiology and Infection, 2018, 146, 65-77.	2.1	12
82	Oral cholera vaccine in cholera prevention and control, Malawi. Bulletin of the World Health Organization, 2018, 96, 428-435.	3.3	19
83	The Epidemiology of Cholera in Zanzibar: Implications for the Zanzibar Comprehensive Cholera Elimination Plan. Journal of Infectious Diseases, 2018, 218, S173-S180.	4.0	10
84	The 1918 Influenza Pandemic: Looking Back, Looking Forward. American Journal of Epidemiology, 2018, 187, 2493-2497.	3.4	19
85	Contact tracing performance during the Ebola epidemic in Liberia, 2014-2015. PLoS Neglected Tropical Diseases, 2018, 12, e0006762.	3.0	90
86	Micro-Hotspots of Risk in Urban Cholera Epidemics. Journal of Infectious Diseases, 2018, 218, 1164-1168.	4.0	28
87	Reconstruction of antibody dynamics and infection histories to evaluate dengue risk. Nature, 2018, 557, 719-723.	27.8	213
88	Timescales of influenza A/H3N2 antibody dynamics. PLoS Biology, 2018, 16, e2004974.	5.6	46
89	Revealing Measles Outbreak Risk With a Nested Immunoglobulin G Serosurvey in Madagascar. American Journal of Epidemiology, 2018, 187, 2219-2226.	3.4	21
90	The potential impact of case-area targeted interventions in response to cholera outbreaks: A modeling study. PLoS Medicine, 2018, 15, e1002509.	8.4	52

#	Article	IF	Citations
91	Challenges and Opportunities in Disease Forecasting in Outbreak Settings: A Case Study of Measles in Lola Prefecture, Guinea. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1489-1497.	1.4	10
92	Cohort Profile: A study of influenza immunity in the urban and rural Guangzhou region of China: the Fluscape Study. International Journal of Epidemiology, 2017, 46, dyv353.	1.9	11
93	Meticillin-resistant Staphylococcus aureus (MRSA) acquisition risk in an endemic neonatal intensive care unit with an active surveillance culture and decolonization programme. Journal of Hospital Infection, 2017, 95, 91-97.	2.9	30
94	Demographics, epidemiology and the impact of vaccination campaigns in a measles-free world – Can elimination be maintained?. Vaccine, 2017, 35, 1488-1493.	3.8	17
95	El Niñ0 and the shifting geography of cholera in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4436-4441.	7.1	68
96	Bacterial Infections in Neonates Following Mupirocin-Based MRSA Decolonization: A Multicenter Cohort Study. Infection Control and Hospital Epidemiology, 2017, 38, 930-936.	1.8	9
97	Dengue diversity across spatial and temporal scales: Local structure and the effect of host population size. Science, 2017, 355, 1302-1306.	12.6	126
98	Phylogenetic insights into age-disparate partnerships and HIV. Lancet HIV, the, 2017, 4, e8-e9.	4.7	8
99	Opportunities and challenges in modeling emerging infectious diseases. Science, 2017, 357, 149-152.	12.6	113
100	Protection against cholera from killed whole-cell oral cholera vaccines: a systematic review and meta-analysis. Lancet Infectious Diseases, The, 2017, 17, 1080-1088.	9.1	138
101	The geography of measles vaccination in the African Great Lakes region. Nature Communications, 2017, 8, 15585.	12.8	60
102	HIV Prevention Efforts and Incidence of HIV in Uganda. New England Journal of Medicine, 2017, 377, 2154-2166.	27.0	163
103	Impact of interventions and the incidence of ebola virus disease in Liberia—implications for future epidemics. Health Policy and Planning, 2017, 32, 205-214.	2.7	45
104	Quantifying Zika: Advancing the Epidemiology of Zika With Quantitative Models. Journal of Infectious Diseases, 2017, 216, S884-S890.	4.0	18
105	Simulations for designing and interpreting intervention trials in infectious diseases. BMC Medicine, 2017, 15, 223.	5.5	64
106	The Impact of active surveillance culture and decolonization programs on NICU MRSA transmission: AÂmulticenter, mechanistic modeling approach Open Forum Infectious Diseases, 2017, 4, S45-S45.	0.9	0
107	What is a Hotspot Anyway?. American Journal of Tropical Medicine and Hygiene, 2017, 96, 1270-1273.	1.4	79
108	High Hepatitis E Seroprevalence Among Displaced Persons in South Sudan. American Journal of Tropical Medicine and Hygiene, 2017, 96, 1296-1301.	1.4	19

#	Article	IF	Citations
109	Gram-Negative and Fungal Infections Following Mupirocin-Based Methicillin-Resistant Staphylococcus aureus Decolonization in Neonates. Open Forum Infectious Diseases, 2016, 3, .	0.9	2
110	Population-Level Effect of Cholera Vaccine on Displaced Populations, South Sudan, 2014. Emerging Infectious Diseases, 2016, 22, 1067-1070.	4.3	29
111	Impact on Epidemic Measles of Vaccination Campaigns Triggered by Disease Outbreaks or Serosurveys: A Modeling Study. PLoS Medicine, 2016, 13, e1002144.	8.4	29
112	Immune Responses to an Oral Cholera Vaccine in Internally Displaced Persons in South Sudan. Scientific Reports, 2016, 6, 35742.	3.3	22
113	Forty Years of Dengue Surveillance at a Tertiary Pediatric Hospital in Bangkok, Thailand, 1973–2012. American Journal of Tropical Medicine and Hygiene, 2016, 94, 1342-1347.	1.4	32
114	Use of serological surveys to generate key insights into the changing global landscape of infectious disease. Lancet, The, 2016, 388, 728-730.	13.7	213
115	Unraveling the drivers of MERS-CoV transmission. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9081-9086.	7.1	95
116	Estimating infectious disease transmission distances using the overall distribution of cases. Epidemics, 2016, 17, 10-18.	3.0	26
117	Heterogeneity of the HIV epidemic in agrarian, trading, and fishing communities in Rakai, Uganda: an observational epidemiological study. Lancet HIV,the, 2016, 3, e388-e396.	4.7	136
118	A comparison of hemagglutination inhibition and neutralization assays for characterizing immunity to seasonal influenza A. Influenza and Other Respiratory Viruses, 2016, 10, 518-524.	3.4	57
119	Trends in the Mechanistic and Dynamic Modeling of Infectious Diseases. Current Epidemiology Reports, 2016, 3, 212-222.	2.4	27
120	Assessing the global threat from Zika virus. Science, 2016, 353, aaf8160.	12.6	311
121	Countering the Zika epidemic in Latin America. Science, 2016, 353, 353-354.	12.6	250
122	How social structures, space, and behaviors shape the spread of infectious diseases using chikungunya as a case study. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13420-13425.	7.1	100
123	Effectiveness of one dose of oral cholera vaccine in response to an outbreak: a case-cohort study. The Lancet Global Health, 2016, 4, e856-e863.	6.3	114
124	A Clinical Decision Tree to Predict Whether a Bacteremic Patient Is Infected With an Extended-Spectrum β-Lactamase–Producing Organism. Clinical Infectious Diseases, 2016, 63, 896-903.	5.8	137
125	Case Study in Evaluating Time Series Prediction Models Using the Relative Mean Absolute Error. American Statistician, 2016, 70, 285-292.	1.6	31
126	Mechanistic Models of Infectious Disease and Their Impact on Public Health. American Journal of Epidemiology, 2016, 183, 415-422.	3.4	46

#	Article	IF	Citations
127	Estimating the Severity and Subclinical Burden of Middle East Respiratory Syndrome Coronavirus Infection in the Kingdom of Saudi Arabia. American Journal of Epidemiology, 2016, 183, 657-663.	3.4	41
128	Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh. PLoS Neglected Tropical Diseases, 2016, 10, e0004400.	3.0	17
129	Challenges in Real-Time Prediction of Infectious Disease: A Case Study of Dengue in Thailand. PLoS Neglected Tropical Diseases, 2016, 10, e0004761.	3.0	39
130	Measuring Spatial Dependence for Infectious Disease Epidemiology. PLoS ONE, 2016, 11, e0155249.	2.5	29
131	Times to key events in Zika virus infection and implications for blood donation: a systematic review. Bulletin of the World Health Organization, 2016, 94, 841-849.	3.3	84
132	Expanding the statistical toolbox. Current Opinion in Infectious Diseases, 2015, 28, 384-391.	3.1	8
133	The First Use of the Global Oral Cholera Vaccine Emergency Stockpile: Lessons from South Sudan. PLoS Medicine, 2015, 12, e1001901.	8.4	65
134	Tracking Cholera through Surveillance of Oral Rehydration Solution Sales at Pharmacies: Insights from Urban Bangladesh. PLoS Neglected Tropical Diseases, 2015, 9, e0004230.	3.0	16
135	Statistical Mechanics and Thermodynamics of Viral Evolution. PLoS ONE, 2015, 10, e0137482.	2.5	10
136	Modeling infectious disease dynamics in the complex landscape of global health. Science, 2015, 347, aaa4339.	12.6	492
137	Reduced vaccination and the risk of measles and other childhood infections post-Ebola. Science, 2015, 347, 1240-1242.	12.6	169
138	HIV Shedding from Male Circumcision Wounds in HIV-Infected Men: A Prospective Cohort Study. PLoS Medicine, 2015, 12, e1001820.	8.4	9
139	Estimating the Life Course of Influenza A(H3N2) Antibody Responses from Cross-Sectional Data. PLoS Biology, 2015, 13, e1002082.	5.6	129
140	Reactive vaccination in the presence of disease hotspots. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141341.	2.6	30
141	Seven challenges in modeling vaccine preventable diseases. Epidemics, 2015, 10, 11-15.	3.0	31
142	Outbreaks of cholera in the time of Ebola: pre-emptive action needed. Lancet, The, 2015, 385, 851.	13.7	7
143	Optimal allocation of the limited oral cholera vaccine supply between endemic and epidemic settings. Journal of the Royal Society Interface, 2015, 12, 20150703.	3.4	12
144	Mitigating measles outbreaks in West Africa post-Ebola. Expert Review of Anti-Infective Therapy, 2015, 13, 1299-1301.	4.4	11

#	Article	IF	Citations
145	Transport networks and inequities in vaccination: remoteness shapes measles vaccine coverage and prospects for elimination across Africa. Epidemiology and Infection, 2015, 143, 1457-1466.	2.1	51
146	Quantifying seasonal population fluxes driving rubella transmission dynamics using mobile phone data. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1114-11119.	7.1	124
147	Seven challenges for model-driven data collection in experimental and observational studies. Epidemics, 2015, 10, 78-82.	3.0	35
148	Six challenges in modelling for public health policy. Epidemics, 2015, 10, 93-96.	3.0	59
149	The Impact of a One-Dose versus Two-Dose Oral Cholera Vaccine Regimen in Outbreak Settings: A Modeling Study. PLoS Medicine, 2015, 12, e1001867.	8.4	87
150	Epidemiology of Infant Dengue Cases Illuminates Serotype-Specificity in the Interaction between Immunity and Disease, and Changes in Transmission Dynamics. PLoS Neglected Tropical Diseases, 2015, 9, e0004262.	3.0	25
151	977Impact of Decolonization on Methicillin-resistant Staphylococcus aureus Transmission in Hospitalized Neonates. Open Forum Infectious Diseases, 2014, 1, S284-S284.	0.9	0
152	The Contribution of Social Behaviour to the Transmission of Influenza A in a Human Population. PLoS Pathogens, 2014, 10, e1004206.	4.7	84
153	The Role of Viral Introductions in Sustaining Community-Based HIV Epidemics in Rural Uganda: Evidence from Spatial Clustering, Phylogenetics, and Egocentric Transmission Models. PLoS Medicine, 2014, 11, e1001610.	8.4	114
154	A Likelihood-Based Approach to Identifying Contaminated Food Products Using Sales Data: Performance and Challenges. PLoS Computational Biology, 2014, 10, e1003692.	3.2	21
155	Revisiting Rayong: Shifting Seroprofiles of Dengue in Thailand and Their Implications for Transmission and Control. American Journal of Epidemiology, 2014, 179, 353-360.	3.4	76
156	Social contacts and the locations in which they occur as risk factors for influenza infection. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140709.	2.6	48
157	Social mixing patterns in rural and urban areas of southern China. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140268.	2.6	132
158	Charting the life-course epidemiology of influenza. Science, 2014, 346, 919-920.	12.6	4
159	Influenza outbreak control practices and the effectiveness of interventions in longâ€term care facilities: a systematic review. Influenza and Other Respiratory Viruses, 2014, 8, 74-82.	3.4	56
160	Incubation Periods of Mosquito-Borne Viral Infections: A Systematic Review. American Journal of Tropical Medicine and Hygiene, 2014, 90, 882-891.	1.4	138
161	Estimating Potential Incidence of MERS-CoV Associated with Hajj Pilgrims to Saudi Arabia, 2014. PLOS Currents, 2014, 6, .	1.4	31
162	Incubation periods of viral gastroenteritis: a systematic review. BMC Infectious Diseases, 2013, 13, 446.	2.9	119

#	Article	IF	Citations
163	Measles elimination: progress, challenges and implications for rubella control. Expert Review of Vaccines, 2013, 12, 917-932.	4.4	58
164	The incubation period of cholera: A systematic review. Journal of Infection, 2013, 66, 432-438.	3.3	134
165	Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. Journal of the Royal Society Interface, 2013, 10, 20130414.	3.4	254
166	Implications of spatially heterogeneous vaccination coverage for the risk of congenital rubella syndrome in South Africa. Journal of the Royal Society Interface, 2013, 10, 20120756.	3.4	33
167	Balancing Evidence and Uncertainty when Considering Rubella Vaccine Introduction. PLoS ONE, 2013, 8, e67639.	2.5	27
168	Urban Cholera Transmission Hotspots and Their Implications for Reactive Vaccination: Evidence from Bissau City, Guinea Bissau. PLoS Neglected Tropical Diseases, 2012, 6, e1901.	3.0	51
169	Evidence for Antigenic Seniority in Influenza A (H3N2) Antibody Responses in Southern China. PLoS Pathogens, 2012, 8, e1002802.	4.7	184
170	Synchrony of Sylvatic Dengue Isolations: A Multi-Host, Multi-Vector SIR Model of Dengue Virus Transmission in Senegal. PLoS Neglected Tropical Diseases, 2012, 6, e1928.	3.0	36
171	Accelerating investigation of food-borne disease outbreaks using pro-active geospatial modeling of food supply chains. , 2012, , .		7
172	Revealing the microscale spatial signature of dengue transmission and immunity in an urban population. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9535-9538.	7.1	126
173	Impact of birth rate, seasonality and transmission rate on minimum levels of coverage needed for rubella vaccination. Epidemiology and Infection, 2012, 140, 2290-2301.	2.1	62
174	Close encounters of the infectious kind: methods to measure social mixing behaviour. Epidemiology and Infection, 2012, 140, 2117-2130.	2.1	130
175	Rubella vaccination: must not be business as usual. Lancet, The, 2012, 380, 217-218.	13.7	14
176	Structured models of infectious disease: Inference with discrete data. Theoretical Population Biology, 2012, 82, 275-282.	1.1	32
177	Measurement of vaccine-derived immunity: how do we use all the data?. Expert Review of Vaccines, 2012, 11, 747-749.	4.4	5
178	Variation in dengue virus plaque reduction neutralization testing: systematic review and pooled analysis. BMC Infectious Diseases, 2012, 12, 233.	2.9	54
179	A global model of malaria climate sensitivity: comparing malaria response to historic climate data based on simulation and officially reported malaria incidence. Malaria Journal, 2012, 11, 331.	2.3	15
180	Estimating Absolute and Relative Case Fatality Ratios from Infectious Disease Surveillance Data. Biometrics, 2012, 68, 598-606.	1.4	33

#	Article	IF	CITATIONS
181	Comparing three basic models for seasonal influenza. Epidemics, 2011, 3, 135-142.	3.0	20
182	Weight Trimming and Propensity Score Weighting. PLoS ONE, 2011, 6, e18174.	2.5	312
183	Visualizing Clinical Evidence: Citation Networks for the Incubation Periods of Respiratory Viral Infections. PLoS ONE, 2011, 6, e19496.	2.5	14
184	Maintaining high rates of measles immunization in Africa. Epidemiology and Infection, 2011, 139, 1039-1049.	2.1	17
185	Association of Race and Age With Survival Among Patients Undergoing Dialysis. JAMA - Journal of the American Medical Association, 2011, 306, 620-6.	7.4	205
186	Identification of the Asymptomatic Ratio. Epidemiology, 2011, 22, 333-335.	2.7	2
187	Location-specific patterns of exposure to recent pre-pandemic strains of influenza A in southern China. Nature Communications, 2011, 2, 423.	12.8	36
188	Measuring the Performance of Vaccination Programs Using Cross-Sectional Surveys: A Likelihood Framework and Retrospective Analysis. PLoS Medicine, 2011, 8, e1001110.	8.4	54
189	Effectiveness of Non-pharmaceutical Interventions in Controlling an Influenza A Outbreak in a School, Thailand, November 2007. , 2011, 4, 611.		1
190	Improving propensity score weighting using machine learning. Statistics in Medicine, 2010, 29, 337-346.	1.6	586
191	Identifying the Probable Timing and Setting of Respiratory Virus Infections. Infection Control and Hospital Epidemiology, 2010, 31, 809-815.	1.8	25
192	H1N1pdm in the Americas. Epidemics, 2010, 2, 132-138.	3.0	15
193	Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. Journal of Clinical Epidemiology, 2010, 63, 826-833.	5.0	355
194	Outbreak of 2009 Pandemic Influenza A (H1N1) at a New York City School. New England Journal of Medicine, 2009, 361, 2628-2636.	27.0	284
195	The Impact of the Demographic Transition on Dengue in Thailand: Insights from a Statistical Analysis and Mathematical Modeling. PLoS Medicine, 2009, 6, e1000139.	8.4	190
196	Estimating incubation period distributions with coarse data. Statistics in Medicine, 2009, 28, 2769-2784.	1.6	116
197	Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infectious Diseases, The, 2009, 9, 291-300.	9.1	684

#	Article	IF	CITATIONS
199	Variation in season of birth in singleton and multiple births concordant for autism spectrum disorders. Paediatric and Perinatal Epidemiology, 2008, 22, 172-179.	1.7	41
200	An Evaluation of Classification Rules Based on Date of Symptom Onset to Identify Health-Care associated Infections. American Journal of Epidemiology, 2007, 166, 1220-1229.	3.4	17
201	Transmissibility of swine flu at Fort Dix, 1976. Journal of the Royal Society Interface, 2007, 4, 755-762.	3.4	45
202	Generating and Browsing Multiple Taxonomies Over a Document Collection. Journal of Management Information Systems, 2003, 19, 191-212.	4.3	30
203	MindMap: utilizing multiple taxonomies and visualization to understand a document collection., 0,,.		5
204	Predicting intensities of Zika infection and microcephaly using transmission intensities of other arboviruses. Bulletin of the World Health Organization, $0, , .$	3.3	0