## Sanket Goel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7055921/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Ink-jet-printed CuO nanoparticle-enhanced miniaturized paper-based electrochemical platform for hypochlorite sensing. Applied Nanoscience (Switzerland), 2023, 13, 1855-1861.                                               | 3.1 | 4         |
| 2  | Flexible Paper and Cloth Substrates With Conductive Laser Induced Graphene Traces for<br>Electroanalytical Sensing, Energy Harvesting and Supercapacitor Applications. IEEE Sensors Journal,<br>2023, 23, 24078-24085.      | 4.7 | 6         |
| 3  | Three Different Rapidly Prototyped Polymeric Substrates With Interdigitated Electrodes for<br><i>Escherichia coli</i> Sensing: A Comparative Study. IEEE Transactions on Nanobioscience, 2023, 22,<br>337-344.              | 3.3 | 2         |
| 4  | Modified Ultra Micro-Carbon Electrode for Efficient Ammonia Sensing for Water Quality Assessment.<br>IEEE Transactions on Nanobioscience, 2023, 22, 301-307.                                                                | 3.3 | 3         |
| 5  | Miniaturized and IoT Enabled Continuous-Flow-Based Microfluidic PCR Device for DNA Amplification.<br>IEEE Transactions on Nanobioscience, 2022, 21, 97-104.                                                                 | 3.3 | 30        |
| 6  | Experimental investigations for dust build-up on low-iron glass exterior and its effects on the performance of solar PV systems. Energy, 2022, 239, 122213.                                                                 | 8.8 | 38        |
| 7  | Microfluidic paper device with on-site heating to produce reactive peroxide species for enhanced smartphone enabled chemiluminescence signal. Talanta, 2022, 236, 122858.                                                   | 5.5 | 11        |
| 8  | Shewanella putrefaciens powered microfluidic microbial fuel cell with printed circuit board electrodes and soft-lithographic microchannel. Chemosphere, 2022, 286, 131855.                                                  | 8.2 | 11        |
| 9  | Electrochemical Mini-Platform With Thread- Based Electrodes for Interference Free Arsenic Detection. IEEE Transactions on Nanobioscience, 2022, 21, 117-124.                                                                | 3.3 | 4         |
| 10 | Laser-induced graphene electrode based flexible heterojunction photovoltaic cells. Microelectronic Engineering, 2022, 251, 111673.                                                                                          | 2.4 | 11        |
| 11 | Integrated Microfluidic Device With Carbon-Thread Microelectrodes for Electrochemical DNA<br>Elemental Analysis. IEEE Transactions on Nanobioscience, 2022, 21, 322-329.                                                    | 3.3 | 2         |
| 12 | Fineline circuits realization with liquid photoresist and DMD-based photolithographic technique for space electronics applications. Journal of Micro-nanopatterning, Materials, and Metrology, 2022, 21, .                  | 0.8 | 0         |
| 13 | Corrections to "Paper-Based Membraneless Co-Laminar Microfluidic Glucose Biofuel Cell With<br>MWCNT-Fed Bucky Paper Bioelectrodesâ€: IEEE Transactions on Nanobioscience, 2022, 21, 166-166.                                | 3.3 | 0         |
| 14 | Internet of Things enabled environmental condition monitoring driven by laser ablated reduced graphene oxide based Al-air fuel cell. Journal of Power Sources, 2022, 521, 230938.                                           | 7.8 | 6         |
| 15 | Leveraging 3-D Printer With 2.8-W Blue Laser Diode to Form Laser-Induced Graphene for Microfluidic<br>Fuel Cell and Electrochemical Sensor. IEEE Transactions on Electron Devices, 2022, 69, 1333-1340.                     | 3.0 | 4         |
| 16 | Laser-induced graphene ablated polymeric microfluidic device with interdigital electrodes for taste sensing application. Sensors and Actuators A: Physical, 2022, 333, 113301.                                              | 4.1 | 8         |
| 17 | Dyeâ€sensitized solar cells as promising candidates for underwater photovoltaic applications. Progress in Photovoltaics: Research and Applications, 2022, 30, 632-639.                                                      | 8.1 | 10        |
| 18 | Internet of thingsâ€enabled photomultiplier tube―and smartphoneâ€based electrochemiluminescence<br>platform to detect choline and dopamine using 3Dâ€printed closed bipolar electrodes. Luminescence,<br>2022, 37, 357-365. | 2.9 | 24        |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Multiplexed and simultaneous biosensing in a 3D-printed portable six-well smartphone operated electrochemiluminescence standalone point-of-care platform. Mikrochimica Acta, 2022, 189, 79.                                                            | 5.0 | 12        |
| 20 | Carbon Cloth-Based Electrochemical Device for Specific and Sensitive Detection of Ascorbic Acid and Tryptophan. IEEE Sensors Journal, 2022, 22, 6072-6079.                                                                                             | 4.7 | 1         |
| 21 | Emerging trends in miniaturized and microfluidic electrochemical sensing platforms. Current<br>Opinion in Electrochemistry, 2022, 33, 100930.                                                                                                          | 4.8 | 16        |
| 22 | Body-worn enzymatic biofuel cell with automated pencil drawn bioelectrodes for energy harvesting from human sweat. Journal of Micromechanics and Microengineering, 2022, 32, 044002.                                                                   | 2.6 | 3         |
| 23 | Broadband terahertz characterization of graphene oxide films fabricated on flexible substrates.<br>Optical Materials, 2022, 125, 112045.                                                                                                               | 3.6 | 6         |
| 24 | Erratum to "A Portable 3-D Printed Electrochemiluminescence Platform With Pencil Graphite<br>Electrodes for Point-of-Care Multiplexed Analysis With Smartphone-Based Read Out― IEEE<br>Transactions on Instrumentation and Measurement, 2022, 71, 1-2. | 4.7 | 0         |
| 25 | Photophysical, electrochemical properties and flexible organic solar cell application of<br>7,7-bis(1-cyclopropyl carbonyl piperazino)-8,8 dicyanoquinodimethane. Materials Advances, 2022, 3,<br>3151-3164.                                           | 5.4 | 1         |
| 26 | Patch-Type Wearable Enzymatic Lactate Biofuel Cell With Carbon Cloth Bioelectrodes for Energy<br>Harvesting From Human Sweat. , 2022, 1, 32-38.                                                                                                        |     | 2         |
| 27 | A Review on Printed Electronics with Digital 3D Printing: Fabrication Techniques, Materials,<br>Challenges and Future Opportunities. Journal of Electronic Materials, 2022, 51, 2747-2765.                                                             | 2.2 | 27        |
| 28 | What ails the photovoltaic performance in single-layered unpoled BFO? – The role of oxygen annealing in improving the photovoltaic efficiency. Solar Energy, 2022, 236, 822-831.                                                                       | 6.1 | 8         |
| 29 | IoT enabled microfluidic colorimetric detection platform for continuous monitoring of nitrite and phosphate in soil. Computers and Electronics in Agriculture, 2022, 195, 106856.                                                                      | 7.7 | 9         |
| 30 | Portable Chemiluminescence Detection Platform and Its Application in Creatinine Detection. IEEE Sensors Journal, 2022, 22, 7177-7184.                                                                                                                  | 4.7 | 6         |
| 31 | Rapid, sensitive and specific electrochemical detection of E. coli using graphitized mesoporous carbon modified electrodes. Sensors and Actuators A: Physical, 2022, 338, 113483.                                                                      | 4.1 | 3         |
| 32 | Fabrication of ultra-thin laser induced graphene electrodes over negative photoresist on glass for various electronic applications. Microelectronic Engineering, 2022, 259, 111790.                                                                    | 2.4 | 2         |
| 33 | Laser-induced graphene-based miniaturized, flexible, non-volatile resistive switching memory devices.<br>Journal of Materials Research, 2022, 37, 3976-3987.                                                                                           | 2.6 | 4         |
| 34 | Miniaturized 3D printed electrochemical platform with optimized Fibrous carbon electrode for non-interfering hypochlorite sensing. Chemosphere, 2022, 302, 134915.                                                                                     | 8.2 | 2         |
| 35 | Recent advancements in integrated microthermofluidic systems for biochemical and biomedical applications $\hat{a} \in \mathcal{E}$ A review. Sensors and Actuators A: Physical, 2022, 341, 113590.                                                     | 4.1 | 19        |
| 36 | Integrated Microfluidic Device With MXene Enhanced Laser-Induced Graphene Bioelectrode for<br>Sensitive and Selective Electroanalytical Detection of Dopamine. IEEE Sensors Journal, 2022, 22,<br>14620-14627.                                         | 4.7 | 9         |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Laser Ablated Reduced Graphene Oxide on Paper to Realize Single Electrode Electrochemiluminescence<br>Standalone Miniplatform Integrated With a Smartphone. IEEE Transactions on Instrumentation and<br>Measurement, 2022, 71, 1-8.         | 4.7  | 6         |
| 38 | An overview of nanomaterial-enhanced miniaturized/microfluidic devices for electrochemical sensing. , 2022, , 23-42.                                                                                                                        |      | 1         |
| 39 | A facile technique to develop conductive paper based bioelectrodes for microbial fuel cell applications. Biosensors and Bioelectronics, 2022, , 114479.                                                                                     | 10.1 | 1         |
| 40 | Role of Microfluidics in Drug Delivery. , 2022, , 107-133.                                                                                                                                                                                  |      | 1         |
| 41 | Microfluidic paper microbial fuel cell powered by Shewanella putrefaciens in IoT cloud framework.<br>International Journal of Hydrogen Energy, 2021, 46, 3230-3239.                                                                         | 7.1  | 25        |
| 42 | Miniaturized polymeric enzymatic biofuel cell with integrated microfluidic device and enhanced laser ablated bioelectrodes. International Journal of Hydrogen Energy, 2021, 46, 3183-3192.                                                  | 7.1  | 34        |
| 43 | Crude black pepper phytochemical 3D printed cell based miniaturized hydrazine electrochemical sensing platform. Journal of Electroanalytical Chemistry, 2021, 880, 114761.                                                                  | 3.8  | 6         |
| 44 | Metalâ€free <scp>Alâ€air</scp> microfluidic paper fuel cell to power portable electronic devices.<br>International Journal of Energy Research, 2021, 45, 7070-7081.                                                                         | 4.5  | 9         |
| 45 | Miniaturized Electrochemiluminescence Platform With Laser-Induced Graphene Electrodes for<br>Multiple Biosensing. IEEE Transactions on Nanobioscience, 2021, 20, 79-85.                                                                     | 3.3  | 28        |
| 46 | Parametric Performance Investigation on Membraneless Microfluidic Paper Fuel Cell with Graphite<br>Composed Pencil Stoke Electrodes. International Journal of Precision Engineering and<br>Manufacturing, 2021, 22, 177-187.                | 2.2  | 6         |
| 47 | A Portable 3-D Printed Electrochemiluminescence Platform With Pencil Graphite Electrodes for<br>Point-of-Care Multiplexed Analysis With Smartphone-Based Read Out. IEEE Transactions on<br>Instrumentation and Measurement, 2021, 70, 1-10. | 4.7  | 12        |
| 48 | MoS <sub>2</sub> /cellulose paper coupled with SnS <sub>2</sub> quantum dots as 2D/0D electrode for high-performance flexible supercapacitor. New Journal of Chemistry, 2021, 45, 8516-8526.                                                | 2.8  | 16        |
| 49 | Direct Electron Transfer based Microfluidic Glucose Biofuel cell with CO2 Laser ablated<br>Bioelectrodes and Microchannel. IEEE Transactions on Nanobioscience, 2021, PP, 1-1.                                                              | 3.3  | 7         |
| 50 | Miniaturized Thermal Monitoring Module With COâ,, Laser Ablated Microfluidic Device for<br>Electrochemically Validated DNA Amplification. IEEE Transactions on Instrumentation and<br>Measurement, 2021, 70, 1-8.                           | 4.7  | 18        |
| 51 | Review—Miniaturized and Microfluidic Devices for Automated Nanoparticle Synthesis. ECS Journal of<br>Solid State Science and Technology, 2021, 10, 017002.                                                                                  | 1.8  | 35        |
| 52 | Development of Completely Automated Poly Potential Portable Potentiostat. ECS Journal of Solid<br>State Science and Technology, 2021, 10, 027001.                                                                                           | 1.8  | 3         |
| 53 | Miniaturized PMMA Electrochemical Platform With Carbon Fiber for Multiplexed and Noninterfering<br>Biosensing of Real Samples. IEEE Transactions on Electron Devices, 2021, 68, 769-774.                                                    | 3.0  | 9         |
| 54 | Biodegradable microneedles fabricated with carbohydrates and proteins: Revolutionary approach for transdermal drug delivery. International Journal of Biological Macromolecules, 2021, 170, 602-621.                                        | 7.5  | 67        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Electrochemiluminescence sensing of vitamin B12 using laser-induced graphene based bipolar and single electrodes in a 3D-printed portable system. Microfluidics and Nanofluidics, 2021, 25, 1.                                       | 2.2 | 19        |
| 56 | Highly Sensitive and Interference-Free Electrochemical Nitrite Detection in a 3D Printed Miniaturized Device. IEEE Transactions on Nanobioscience, 2021, 20, 175-182.                                                                | 3.3 | 13        |
| 57 | Handheld and â€~Turnkey' 3D printed paper-microfluidic viscometer with on-board microcontroller for smartphone based biosensing applications. Analytica Chimica Acta, 2021, 1153, 338303.                                            | 5.4 | 12        |
| 58 | Integrated Temperature Controlling Platform to Synthesize ZnO Nanoparticles and its Deposition on Al-Foil for Biosensing. IEEE Sensors Journal, 2021, 21, 9538-9545.                                                                 | 4.7 | 15        |
| 59 | Investigation of Silicon Solar Cells under Submerged Conditions with the Influence of Various<br>Parameters: A Comparative Study. Energy Technology, 2021, 9, 2100018.                                                               | 3.8 | 7         |
| 60 | Microfluidic viscometers for biochemical and biomedical applications: A review. Engineering Research Express, 2021, 3, 022003.                                                                                                       | 1.6 | 25        |
| 61 | Portable Electrochemiluminescence Platform With Laser-Induced Graphene-Based U-Shaped Bipolar<br>Electrode for Selective Sensing of Various Analytes. IEEE Transactions on Electron Devices, 2021, 68,<br>2447-2454.                 | 3.0 | 11        |
| 62 | Droplet-based lab-on-chip platform integrated with laser ablated graphene heaters to synthesize gold nanoparticles for electrochemical sensing and fuel cell applications. Scientific Reports, 2021, 11, 9750.                       | 3.3 | 19        |
| 63 | A Study on the effect of Cr doping on the Structural, Optical and Photovoltaic Properties of BFO based Heterostructures. , 2021, , .                                                                                                 |     | 2         |
| 64 | Smartphone enabled miniaturized temperature controller platform to synthesize NiO/CuO<br>nanoparticles for electrochemical sensing and nanomicelles for ocular drug delivery applications.<br>Biomedical Microdevices, 2021, 23, 31. | 2.8 | 14        |
| 65 | Electro-Microfluidic Viscometer with Integrated Microcontroller and Pumping System for<br>Point-of-Care Biosensing Applications. IEEE Instrumentation and Measurement Magazine, 2021, 24, 23-28.                                     | 1.6 | 2         |
| 66 | Laser induced graphene electrodes enhanced with carbon nanotubes for membraneless microfluidic fuel cell. Sustainable Energy Technologies and Assessments, 2021, 45, 101176.                                                         | 2.7 | 9         |
| 67 | Catalyst-mitigated arrayed aluminum-air origami fuel cell with ink-jet printed custom-porosity cathode. Energy, 2021, 224, 120017.                                                                                                   | 8.8 | 8         |
| 68 | Miniaturized DNA amplification platform with soft-lithographically fabricated continuous-flow PCR microfluidic device on a portable temperature controller. Microfluidics and Nanofluidics, 2021, 25, 1.                             | 2.2 | 15        |
| 69 | Laser-Induced Graphene Printed Wearable Flexible Antenna-Based Strain Sensor for Wireless Human<br>Motion Monitoring. IEEE Transactions on Electron Devices, 2021, 68, 3189-3194.                                                    | 3.0 | 44        |
| 70 | Droplet based microfluidic device integrated with ink jet printed three electrode system for electrochemical detection of ascorbic acid. Sensors and Actuators A: Physical, 2021, 325, 112685.                                       | 4.1 | 18        |
| 71 | Submerged solar energy harvesting using ferroelectric Tiâ€doped <scp>BFO</scp> â€based heterojunction<br>solar cells. International Journal of Energy Research, 2021, 45, 20400-20412.                                               | 4.5 | 6         |
| 72 | Rapid Inkjet-Printed Miniaturized Interdigitated Electrodes for Electrochemical Sensing of Nitrite and<br>Taste Stimuli. Micromachines, 2021, 12, 1037.                                                                              | 2.9 | 8         |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Portable Thermal Management Platform for Synthesis of ZnO Nanoparticle in a Microfluidic Device:<br>Validated for Electrochemical Sensing and Glucose Fuel Cell Applications. IEEE Transactions on<br>Electron Devices, 2021, 68, 4070-4076.   | 3.0 | 9         |
| 74 | Experimental studies on droplet characteristics in a microfluidic flow focusing droplet generator:<br>effect of continuous phase on droplet encapsulation. European Physical Journal E, 2021, 44, 108.                                         | 1.6 | 6         |
| 75 | Enhanced photovoltaic response in ferroelectric Ti-doped BFO heterojunction through interface engineering for building integrated applications. Solar Energy, 2021, 225, 863-874.                                                              | 6.1 | 14        |
| 76 | Extensive Enhancement in Charge Collection Efficiency of Ferroelectric Cr-Doped BFO-Based Solar<br>Cells by Using TiO2 Nanotube Arrays. IEEE Journal of Photovoltaics, 2021, 11, 1278-1284.                                                    | 2.5 | 6         |
| 77 | Influence of cellulose separators in coin-sized 3D printed paper-based microbial fuel cells. Sustainable<br>Energy Technologies and Assessments, 2021, 47, 101535.                                                                             | 2.7 | 14        |
| 78 | Microfluidic non-enzymatic biofuel cell integrated with electrodeposited metallic catalysts on a paper based platform. Journal of Power Sources, 2021, 510, 230405.                                                                            | 7.8 | 6         |
| 79 | Development of Laser-Induced Graphene-Based Automated Electro Microfluidic Viscometer for<br>Biochemical Sensing Applications. IEEE Transactions on Electron Devices, 2021, 68, 5184-5191.                                                     | 3.0 | 9         |
| 80 | Portable and Autonomous Device for Real-time Colorimetric Detection: Validation for Phosphorous and Nitrite Detection. Sensors and Actuators A: Physical, 2021, 330, 112896.                                                                   | 4.1 | 21        |
| 81 | Single-step inkjet-printed paper-origami arrayed air-breathing microfluidic microbial fuel cell and its validation. International Journal of Hydrogen Energy, 2021, 46, 35408-35419.                                                           | 7.1 | 20        |
| 82 | Simultaneous detection of Vitamin B12 and Vitamin C from real samples using miniaturized laser-induced graphene based electrochemiluminescence device with closed bipolar electrode. Sensors and Actuators A: Physical, 2021, 331, 112831.     | 4.1 | 27        |
| 83 | A brief review on miniaturized electrochemiluminescence devices: From fabrication to applications.<br>Current Opinion in Electrochemistry, 2021, 30, 100800.                                                                                   | 4.8 | 28        |
| 84 | Droplet based microfluidics integrated with machine learning. Sensors and Actuators A: Physical, 2021, 332, 113096.                                                                                                                            | 4.1 | 30        |
| 85 | Optimized ink jetted paper device for electroanalytical detection of picric acid. Colloids and Surfaces<br>B: Biointerfaces, 2021, 208, 112056.                                                                                                | 5.0 | 33        |
| 86 | Miniaturized Electrochemiluminescence Platform With Laser-Induced Graphene-Based Single<br>Electrode for Interference-Free Sensing of Dopamine, Xanthine, and Glucose. IEEE Transactions on<br>Instrumentation and Measurement, 2021, 70, 1-8. | 4.7 | 19        |
| 87 | Single microfluidic fuel cell with three fuels – formic acid, glucose and microbes: A comparative performance investigation. Journal of Electrochemical Science and Engineering, 2021, 11, 306-316.                                            | 3.5 | 2         |
| 88 | First report on graphene oxide free, ultrafast fabrication of reduced graphene oxide on paper via<br>visible light laser irradiation. Diamond and Related Materials, 2021, 120, 108680.                                                        | 3.9 | 6         |
| 89 | Flexible Touch Pad on Paper and Cloth by Blue Diode Ablated Laser Induced Graphene. , 2021, , .                                                                                                                                                |     | 1         |
| 90 | Paper-based optimized chemical fuel cell with laser-scribed graphene electrodes for energy harvesting. Microfluidics and Nanofluidics, 2021, 25, 1.                                                                                            | 2.2 | 3         |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Graphenized Papertronic Devices using Blue Laser ablated Polyimide Resin Paper. , 2021, , .                                                                                                                                       |     | 3         |
| 92  | High performance MXene supported Gold Nanoparticles-based 3D Printed Anode for Non-Enzymatic<br>Biofuel Cell. , 2021, , .                                                                                                         |     | 1         |
| 93  | 3D Printed Bioelectrodes for Enzymatic Biofuel Cell: Simple, Rapid, Optimized and Enhanced Approach.<br>IEEE Transactions on Nanobioscience, 2020, 19, 4-10.                                                                      | 3.3 | 23        |
| 94  | Underwater Characterization and Monitoring of Amorphous and Monocrystalline Solar Cells in Diverse Water Settings. IEEE Sensors Journal, 2020, 20, 2730-2737.                                                                     | 4.7 | 18        |
| 95  | Performance Analysis of Submerged Polycrystalline Photovoltaic Cell in Varying Water Conditions.<br>IEEE Journal of Photovoltaics, 2020, 10, 531-538.                                                                             | 2.5 | 17        |
| 96  | Development of Membraneless Paperâ€pencil Microfluidic Hydrazine Fuel Cell. Electroanalysis, 2020, 32,<br>2581-2588.                                                                                                              | 2.9 | 7         |
| 97  | Surface modified 3D printed carbon bioelectrodes for glucose/O2 enzymatic biofuel cell: Comparison and optimization. Sustainable Energy Technologies and Assessments, 2020, 42, 100811.                                           | 2.7 | 13        |
| 98  | Analysis of submerged amorphous, mono-and poly-crystalline silicon solar cells using halogen lamp and comparison with xenon solar simulator. Solar Energy, 2020, 211, 744-752.                                                    | 6.1 | 14        |
| 99  | Miniaturized Platform With Nanocomposite Optimized Pencil Electrodes for Selective Non-Interfering<br>Electrochemical Sensing. IEEE Nanotechnology Magazine, 2020, 19, 575-578.                                                   | 2.0 | 7         |
| 100 | Optimized Shelf-Stacked Paper Origami-Based Glucose Biofuel Cell with Immobilized Enzymes and a Mediator. ACS Sustainable Chemistry and Engineering, 2020, 8, 12313-12320.                                                        | 6.7 | 31        |
| 101 | Electromicrofluidic Device on Multilayered Laser-Induced Polyamide Substrate for Diverse<br>Electrochemical Applications. IEEE Transactions on Electron Devices, 2020, 67, 5097-5103.                                             | 3.0 | 9         |
| 102 | Plasma Treatment and Copper Metallization for Reliable Plated-Through-Holes in Microwave PCBs for<br>Space Electronic Packaging. IEEE Transactions on Components, Packaging and Manufacturing<br>Technology, 2020, 10, 1921-1928. | 2.5 | 10        |
| 103 | Flexible and optimized carbon paste electrodes for direct electron transfer-based glucose biofuel cell fed by various physiological fluids. Applied Nanoscience (Switzerland), 2020, 10, 4315-4324.                               | 3.1 | 14        |
| 104 | Automated pencil electrode formation platform to realize uniform and reproducible graphite electrodes on paper for microfluidic fuel cells. Scientific Reports, 2020, 10, 11675.                                                  | 3.3 | 24        |
| 105 | Optimization of Carbon Cloth Bioelectrodes for Enzyme-based Biofuel cell for Wearable<br>Bioelectronics. , 2020, , .                                                                                                              |     | 3         |
| 106 | Electronic Nasal Pod: A 3D Printed Device to Filter and Electrochemically Detect pollutants. , 2020, , .                                                                                                                          |     | 1         |
| 107 | Optimization and characterization of direct UV laser writing system for microscale applications.<br>Journal of Micromechanics and Microengineering, 2020, 30, 095003.                                                             | 2.6 | 28        |
| 108 | Highly Selective Electrochemical Sensing of Dopamine, Xanthine, Ascorbic Acid and Uric Acid Using a<br>Carbon Fiber Paper. IEEE Sensors Journal, 2020, 20, 11707-11712.                                                           | 4.7 | 25        |

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Miniaturized electrochemical platform with ink-jetted electrodes for multiplexed and interference mitigated biochemical sensing. Applied Nanoscience (Switzerland), 2020, 10, 3745-3755.                   | 3.1 | 15        |
| 110 | Internet of Things enabled portable thermal management system with microfluidic platform to<br>synthesize MnO <sub>2</sub> nanoparticles for electrochemical sensing. Nanotechnology, 2020, 31,<br>425504. | 2.6 | 35        |
| 111 | Laser-Induced Flexible Electronics (LIFE) for Resistive, Capacitive and Electrochemical Sensing Applications. IEEE Sensors Journal, 2020, 20, 7392-7399.                                                   | 4.7 | 49        |
| 112 | PDMS-Based Microfluidic Glucose Biofuel Cell Integrated With Optimized Laser-Induced Flexible<br>Graphene Bioelectrodes. IEEE Transactions on Electron Devices, 2020, 67, 1832-1838.                       | 3.0 | 44        |
| 113 | Analysing consequence of solar irradiance on amorphous silicon solar cell in variable underwater environments. International Journal of Energy Research, 2020, 44, 4493-4504.                              | 4.5 | 12        |
| 114 | Direct UV laser writing system to photolithographically fabricate optimal microfluidic geometries:<br>Experimental investigations. Materials Today: Proceedings, 2020, 28, 799-803.                        | 1.8 | 3         |
| 115 | Experimental characterization to fabricate CO2 laser ablated PMMA microchannel with homogeneous surface. Materials Today: Proceedings, 2020, 28, 804-807.                                                  | 1.8 | 10        |
| 116 | Microfluidic Soil Nutrient Detection System: Integrating Nitrite, pH, and Electrical Conductivity Detection. IEEE Sensors Journal, 2020, 20, 4504-4511.                                                    | 4.7 | 34        |
| 117 | Performance optimization of microfluidic paper fuel ell with varying cellulose fiber papers as absorbent pad. International Journal of Energy Research, 2020, 44, 3893-3904.                               | 4.5 | 35        |
| 118 | Study of solar irradiance and performance analysis of submerged monocrystalline and polycrystalline solar cells. Progress in Photovoltaics: Research and Applications, 2020, 28, 725-735.                  | 8.1 | 23        |
| 119 | Greenly synthesized silver nanoparticles for supercapacitor and electrochemical sensing applications in a 3D printed microfluidic platform. Microchemical Journal, 2020, 157, 104973.                      | 4.5 | 41        |
| 120 | Laser induced graphene on phenolic resin and alcohol composite sheet for flexible electronics applications. Flexible and Printed Electronics, 2020, 5, 042001.                                             | 2.7 | 15        |
| 121 | Advances in continuous-flow based microfluidic PCR devices—a review. Engineering Research Express,<br>2020, 2, 042001.                                                                                     | 1.6 | 37        |
| 122 | Microfluidic devices for synthesizing nanomaterials—a review. Nano Express, 2020, 1, 032004.                                                                                                               | 2.4 | 45        |
| 123 | Optimization and Characterization of Laser-Induced Graphene Electrodes for Chemical Fuel Cell to Realize a Microfluidic Platform. , 2020, , .                                                              |     | 1         |
| 124 | Automated Mini-Platform With 3-D Printed Paper Microstrips for Image Processing-Based Viscosity<br>Measurement of Biological Samples. IEEE Transactions on Electron Devices, 2020, 67, 2559-2565.          | 3.0 | 11        |
| 125 | Statistical Performance Analysis and Robust Design of Paper Microfluidic Membraneless Fuel Cell<br>With Pencil Graphite Electrodes. Journal of Electrochemical Energy Conversion and Storage, 2020, 17,    | 2.1 | 15        |
| 126 | Development of Miniaturized Interdigitated Electrode Sensors and Their Application in Taste Sensing.<br>ECS Transactions, 2020, 98, 49-56.                                                                 | 0.5 | 5         |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Modified Graphite Paper Based Miniaturized Electrochemically Optimized Hydrazine Sensing Platform.<br>ECS Journal of Solid State Science and Technology, 2020, 9, 115001.                                              | 1.8 | 15        |
| 128 | Study of Submerged Mono-and Poly-Crystalline Silicon Solar Cells with Split Spectral Ranges Using Optical Filters. ECS Journal of Solid State Science and Technology, 2020, 9, 075005.                                 | 1.8 | 6         |
| 129 | Realization of Optimized Wax Laminated Microfluidic Paper-Based Analytical Devices. ECS Journal of Solid State Science and Technology, 2020, 9, 115025.                                                                | 1.8 | 9         |
| 130 | Miniaturized Disposable Buckypaper-Polymer Substrate Based Electrochemical Purine Sensing<br>Platform. ECS Journal of Solid State Science and Technology, 2020, 9, 101009.                                             | 1.8 | 2         |
| 131 | Microfluidic Enzymatic Glucose Biofuel Cell with MWCNT patterned Printed Circuit Board Electrodes. , 2020, , .                                                                                                         |     | 0         |
| 132 | Development of Miniaturized Interdigitated Electrode Sensors and Their Application in Taste Sensing.<br>ECS Meeting Abstracts, 2020, MA2020-02, 3400-3400.                                                             | 0.0 | 1         |
| 133 | Novel 3D Printed Microfluidic Paper-Based Analytical Device With Integrated Screen-Printed<br>Electrodes for Automated Viscosity Measurements. IEEE Transactions on Electron Devices, 2019, 66,<br>3196-3201.          | 3.0 | 20        |
| 134 | <i>Escherichia Coli</i> Fed Paper-Based Microfluidic Microbial Fuel Cell With MWCNT Composed<br>Bucky Paper Bioelectrodes. IEEE Transactions on Nanobioscience, 2019, 18, 510-515.                                     | 3.3 | 14        |
| 135 | Realization of Microfluidic Paper-Based Analytical Devices Using a 3-D Printer: Characterization and Optimization. IEEE Transactions on Device and Materials Reliability, 2019, 19, 529-536.                           | 2.0 | 16        |
| 136 | Next-Generation 3D Printed Microfluidic Membraneless Enzymatic Biofuel Cell: Cost-Effective and Rapid Approach. IEEE Transactions on Electron Devices, 2019, 66, 3628-3635.                                            | 3.0 | 24        |
| 137 | Miniaturized additively manufactured co-laminar microfluidic glucose biofuel cell with optimized grade pencil bioelectrodes. International Journal of Hydrogen Energy, 2019, 44, 31434-31444.                          | 7.1 | 19        |
| 138 | Fully Integrated, Automated, and Smartphone Enabled Point-of-Source Portable Platform With<br>Microfluidic Device for Nitrite Detection. IEEE Transactions on Biomedical Circuits and Systems, 2019,<br>13, 1518-1524. | 4.0 | 30        |
| 139 | Enzymatic fuel cells in a microfluidic environment: Status and opportunities. A mini review.<br>Electrochemistry Communications, 2019, 107, 106533.                                                                    | 4.7 | 30        |
| 140 | Amperometric Automation and Optimization Paper Microfluidic Viscometer. , 2019, 3, 1-4.                                                                                                                                |     | 4         |
| 141 | Fully Assembled Membraneless Glucose Biofuel Cell With MWCNT Modified Pencil Graphite Leads as Novel Bioelectrodes. IEEE Transactions on Nanobioscience, 2019, 18, 170-175.                                            | 3.3 | 5         |
| 142 | Fabrication of Enzymatic Biofuel Cell with Electrodes on Both Sides of Microfluidic Channel.<br>International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 511-520.                 | 4.9 | 11        |
| 143 | Laser-induced Flexible Graphene Bioelectrodes for Enzymatic Biofuel Cell. , 2019, , .                                                                                                                                  |     | 2         |
| 144 | Microfluidic paper based membraneless biofuel cell to harvest energy from various beverages. Journal<br>of Electrochemical Science and Engineering, 2019, 10, 49-54.                                                   | 3.5 | 9         |

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Functionalized and Enhanced HB Pencil Graphite as Bioanode for Glucose-O <sub>2</sub> Biofuel Cell.<br>IEEE Sensors Journal, 2019, 19, 802-811.                                                                                                   | 4.7  | 14        |
| 146 | 3-D Printed Integrated and Automated Electro-Microfluidic Viscometer for Biochemical Applications.<br>IEEE Transactions on Instrumentation and Measurement, 2019, 68, 2648-2655.                                                                  | 4.7  | 20        |
| 147 | From waste to watts in micro-devices: Review on development of Membraned and Membraneless<br>Microfluidic Microbial Fuel Cell. Applied Materials Today, 2018, 11, 270-279.                                                                        | 4.3  | 54        |
| 148 | Optimized Bucky Paper-Based Bioelectrodes for Oxygen–Glucose Fed Enzymatic Biofuel Cells. IEEE<br>Sensors Journal, 2018, 18, 5395-5401.                                                                                                           | 4.7  | 24        |
| 149 | Paper-Based Membraneless Co-Laminar Microfluidic Glucose Biofuel Cell With MWCNT-Fed Bucky Paper<br>Bioelectrodes. IEEE Transactions on Nanobioscience, 2018, 17, 374-379.                                                                        | 3.3  | 39        |
| 150 | Microfluidic diffusivity meter: a tool to optimize CO <sub>2</sub> driven enhanced oil recovery.<br>Proceedings of SPIE, 2017, , .                                                                                                                | 0.8  | 1         |
| 151 | Screening various pencil leads coated with MWCNT and PANI as enzymatic biofuel cell biocathode.<br>International Journal of Hydrogen Energy, 2017, 42, 27220-27229.                                                                               | 7.1  | 25        |
| 152 | Modeling the performance of enzymatic glucose fuel cells. Journal of Electroanalytical Chemistry, 2017, 801, 354-359.                                                                                                                             | 3.8  | 5         |
| 153 | Preparation of pH Sensitive MMT/PEGMEA Nanocomposite Micropatterns by Rapid and Simple UV Curing Procedures. Journal of Nanoelectronics and Optoelectronics, 2017, 12, 550-556.                                                                   | 0.5  | 1         |
| 154 | Stereolithographic 3D Printed Microfluidic Viscometer for Rapid Detection of Automobile Fuel<br>Adulteration. Sensor Letters, 2017, 15, 545-551.                                                                                                  | 0.4  | 3         |
| 155 | Rapid and Automated Measurement of Milk Adulteration Using a 3D Printed Optofluidic<br>Microviscometer (OMV). IEEE Sensors Journal, 2016, 16, 3000-3007.                                                                                          | 4.7  | 34        |
| 156 | Recent developments in enzymatic biofuel cell: towards implantable integrated micro-devices.<br>International Journal of Nanoparticles, 2015, 8, 61.                                                                                              | 0.3  | 23        |
| 157 | Computational Analysis of a Microfluidic Viscometer and Its Application in the Rapid and Automated<br>Measurement of Biodiesel Blending Under Pressure Driven Flow. Journal of Computational and<br>Theoretical Nanoscience, 2015, 12, 2311-2317. | 0.4  | 4         |
| 158 | Hydrogen: A sustainable fuel for future of the transport sector. Renewable and Sustainable Energy<br>Reviews, 2015, 51, 623-633.                                                                                                                  | 16.4 | 503       |
| 159 | Multi walled carbon nanotube and polyaniline coated pencil graphite based bio-cathode for enzymatic biofuel cell. International Journal of Hydrogen Energy, 2015, 40, 9515-9522.                                                                  | 7.1  | 27        |
| 160 | Fabrication of Vertically aligned Copper Nanotubes as a Novel Electrode for Enzymatic Biofuel Cells.<br>Electrochimica Acta, 2015, 167, 213-218.                                                                                                  | 5.2  | 16        |
| 161 | Rapid and automated measurement of biofuel blending using a microfluidic viscometer. Fuel, 2015, 139, 213-219.                                                                                                                                    | 6.4  | 18        |
| 162 | Application of electrochemical impedance spectroscopy in bio-fuel cell characterization: A review.<br>International Journal of Hydrogen Energy, 2014, 39, 20159-20170.                                                                            | 7.1  | 74        |

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Genomic Technologies for Systems Biology. , 2010, , 15-44.                                                                                                                    |     | Ο         |
| 164 | Pyrosequencing enhancement for better detection limit and sequencing homopolymers. Biochemical and Biophysical Research Communications, 2010, 401, 117-123.                   | 2.1 | 13        |
| 165 | Chemiluminiscence sensor for high-throughput DNA sequencing. Procedia Chemistry, 2009, 1, 1091-1094.                                                                          | 0.7 | 1         |
| 166 | Integrated waveguide mixer/splitter for lab-on-a-chip applications. , 2008, , .                                                                                               |     | 0         |
| 167 | Integrated optical measurement of microfluid velocity. Journal of Micromechanics and Microengineering, 2005, 15, 1810-1816.                                                   | 2.6 | 12        |
| 168 | Fabrication of micro-optical/microfluidic biochips. , 2003, , .                                                                                                               |     | 7         |
| 169 | Optical detection system for biochips using plastic fiber optics. Review of Scientific Instruments, 2003, 74, 4145-4149.                                                      | 1.3 | 4         |
| 170 | Lab-on-a-chip optical detection system using plastic fiber optics. , 2003, , .                                                                                                |     | 1         |
| 171 | Biochips with integrated optics and fluidics. , 2003, 5062, 873.                                                                                                              |     | 3         |
| 172 | Body-worn Enzymatic Biofuel Cell with Automated Pencil drawn Bioelectrodes for Energy Harvesting from Human Sweat. Journal of Micromechanics and Microengineering, 0, , .     | 2.6 | 0         |
| 173 | Stacked Microfluidic Paper Ethanol Fuel Cell with a Variety of Rapidly Prototyped Electrodes:<br>Optimization and Performance Investigation. Energy Technology, 0, , 2200073. | 3.8 | 1         |