
Feng-Ru Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/705457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible triboelectric generator. Nano Energy, 2012, 1, 328-334.	16.0	4,578
2	Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010, 464, 392-395.	27.8	3,025
3	Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films. Nano Letters, 2012, 12, 3109-3114.	9.1	1,676
4	Flexible Nanogenerators for Energy Harvesting and Selfâ€Powered Electronics. Advanced Materials, 2016, 28, 4283-4305.	21.0	1,438
5	Epitaxial Growth of Heterogeneous Metal Nanocrystals: From Gold Nano-octahedra to Palladium and Silver Nanocubes. Journal of the American Chemical Society, 2008, 130, 6949-6951.	13.7	719
6	Theoretical Comparison, Equivalent Transformation, and Conjunction Operations of Electromagnetic Induction Generator and Triboelectric Nanogenerator for Harvesting Mechanical Energy. Advanced Materials, 2014, 26, 3580-3591.	21.0	482
7	In Vivo Powering of Pacemaker by Breathingâ€Driven Implanted Triboelectric Nanogenerator. Advanced Materials, 2014, 26, 5851-5856.	21.0	476
8	Liquidâ€Metal Electrode for Highâ€Performance Triboelectric Nanogenerator at an Instantaneous Energy Conversion Efficiency of 70.6%. Advanced Functional Materials, 2015, 25, 3718-3725.	14.9	427
9	Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nature Communications, 2019, 10, 5147.	12.8	335
10	Woven Structured Triboelectric Nanogenerator for Wearable Devices. ACS Applied Materials & Interfaces, 2014, 6, 14695-14701.	8.0	317
11	Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy, 2020, 77, 105143.	16.0	282
12	Size effects on elasticity, yielding, and fracture of silver nanowires: <i>In situ</i> experiments. Physical Review B, 2012, 85, .	3.2	266
13	Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy, 2013, 2, 491-497.	16.0	264
14	Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. Journal of Materials Chemistry A, 2016, 4, 3728-3734.	10.3	257
15	Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. Nano Energy, 2019, 56, 828-839.	16.0	237
16	Atomic Structure of Auâ^'Pd Bimetallic Alloyed Nanoparticles. Journal of the American Chemical Society, 2010, 132, 12480-12486.	13.7	229
17	Light Propagation in Curved Silver Nanowire Plasmonic Waveguides. Nano Letters, 2011, 11, 1603-1608.	9.1	221
18	Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity. Chemical Science, 2011, 2, 531-539.	7.4	172

Feng-Ru Fan

#	Article	IF	CITATIONS
19	Facet-Selective Epitaxial Growth of Heterogeneous Nanostructures of Semiconductor and Metal: ZnO Nanorods on Ag Nanocrystals. Journal of the American Chemical Society, 2009, 131, 12036-12037.	13.7	170
20	Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chemical Society Reviews, 2021, 50, 10983-11031.	38.1	170
21	ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology, 2010, 21, 405203.	2.6	167
22	Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Research, 2015, 8, 3934-3943.	10.4	164
23	Highly transparent and flexible triboelectric nanogenerators: performance improvements and fundamental mechanisms. Journal of Materials Chemistry A, 2014, 2, 13219-13225.	10.3	137
24	Atomic-Scale Control of Silicon Expansion Space as Ultrastable Battery Anodes. ACS Nano, 2016, 10, 8243-8251.	14.6	128
25	Directâ€Current Triboelectric Nanogenerator Realized by Air Breakdown Induced Ionized Air Channel. Advanced Energy Materials, 2018, 8, 1800889.	19.5	111
26	Transparent and Flexible Self-Charging Power Film and Its Application in a Sliding Unlock System in Touchpad Technology. ACS Nano, 2016, 10, 8078-8086.	14.6	93
27	A power-transformed-and-managed triboelectric nanogenerator and its applications in a self-powered wireless sensing node. Nanotechnology, 2014, 25, 225402.	2.6	89
28	Ultrasensitive self-powered pressure sensing system. Extreme Mechanics Letters, 2015, 2, 28-36.	4.1	78
29	Distinctive Enhanced and Tunable Plasmon Resonant Absorption from Controllable Au@Cu ₂ O Nanoparticles: Experimental and Theoretical Modeling. Journal of Physical Chemistry C, 2012, 116, 4477-4483.	3.1	77
30	Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring. Nano Energy, 2019, 56, 693-699.	16.0	71
31	Complementary power output characteristics of electromagnetic generators and triboelectric generators. Nanotechnology, 2014, 25, 135402.	2.6	64
32	Sublimationâ€Induced Shape Evolution of Silver Cubes. Small, 2009, 5, 2812-2815.	10.0	57
33	An Effective Strategy for Room-Temperature Synthesis of Single-Crystalline Palladium Nanocubes and Nanodendrites in Aqueous Solution. Crystal Growth and Design, 2009, 9, 2335-2340.	3.0	52
34	Wearable high-dielectric-constant polymers with core–shell liquid metal inclusions for biomechanical energy harvesting and a self-powered user interface. Journal of Materials Chemistry A, 2019, 7, 7109-7117.	10.3	48
35	Chitosan biopolymerâ€derived selfâ€powered triboelectric sensor with optimized performance through molecular surface engineering and dataâ€driven learning. InformaÄnÃ-Materiály, 2019, 1, 116-125.	17.3	47
36	Protecting the Nanoscale Properties of Ag Nanowires with a Solution-Grown SnO ₂ Monolayer as Corrosion Inhibitor. Journal of the American Chemical Society, 2019, 141, 13977-13986.	13.7	45

Feng-Ru Fan

#	Article	IF	CITATIONS
37	Size and dimension dependent surface-enhanced Raman scattering properties of well-defined Ag nanocubes. Applied Materials Today, 2019, 14, 224-232.	4.3	45
38	Bioâ€Derived Natural Materials Based Triboelectric Devices for Selfâ€Powered Ubiquitous Wearable and Implantable Intelligent Devices. Advanced Sustainable Systems, 2020, 4, 2000108.	5.3	42
39	Design and engineering of <scp>highâ€performance</scp> triboelectric nanogenerator for ubiquitous unattended devices. EcoMat, 2021, 3, e12093.	11.9	39
40	Emerging Devices Based on Two-Dimensional Monolayer Materials for Energy Harvesting. Research, 2019, 2019, 7367828.	5.7	39
41	Highâ€Performance Piezoâ€Electrocatalytic Sensing of Ascorbic Acid with Nanostructured Wurtzite Zinc Oxide. Advanced Materials, 2021, 33, e2105697.	21.0	38
42	Au+-cetyltrimethylammonium bromide solution: A novel precursor for seed-mediated growth of gold nanoparticles in aqueous solution. Nano Research, 2013, 6, 29-37.	10.4	34
43	Influence of external electric field on piezotronic effect in ZnO nanowires. Nano Research, 2015, 8, 2390-2399.	10.4	33
44	A density functional theory approach to mushroom-like platinum clusters on palladium-shell over Au core nanoparticles for high electrocatalytic activity. Physical Chemistry Chemical Physics, 2011, 13, 5441.	2.8	28
45	Charged droplet-driven fast formation of nickel–iron (oxy)hydroxides with rich oxygen defects for boosting overall water splitting. Journal of Materials Chemistry A, 2021, 9, 20058-20067.	10.3	28
46	Tribocatalysis: challenges and perspectives. Science China Chemistry, 2021, 64, 1609-1613.	8.2	27
47	In Situ Raman Probing of Hotâ€Electron Transfer at Gold–Graphene Interfaces with Atomic Layer Accuracy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	24
48	Supercapacitor-Inspired Triboelectric Nanogenerator Based on Electrostatic Double Layer. Nano Energy, 2022, 95, 106971.	16.0	24
49	Droplet-based nanogenerators for energy harvesting and self-powered sensing. Nanoscale, 2021, 13, 17290-17309.	5.6	18
50	Triboelectric sensor as self-powered signal reader for scanning probe surface topography imaging. Nanotechnology, 2015, 26, 165501.	2.6	15
51	<i>In situ</i> Raman spectroscopy reveals the structure evolution and lattice oxygen reaction pathway induced by the crystalline–amorphous heterojunction for water oxidation. Chemical Science, 2022, 13, 5639-5649.	7.4	14
52	Synthesis and surface plasmonic properties of ultra-thick silver nanowires. Journal of Physics Condensed Matter, 2016, 28, 254005.	1.8	12
53	High-Resolution Imaging of Electric Field Enhancement and Energy-Transfer Quenching by a Single Silver Nanowire Using QD-Modified AFM Tips. Journal of Physical Chemistry Letters, 2013, 4, 2284-2291.	4.6	8
54	Design Strategies of Hole Transport Materials by Electronic and Steric Controls for nâ€iâ€p Perovskite Solar Cells. ChemSusChem, 2022, , .	6.8	5

#	Article	IF	CITATIONS
55	Flexible Triboelectric Nanogenerator for Energy Harvesting and Pressure Sensor. , 2013, , .		0
56	(Invited) Synthesis of Thermally and Chemically Stable Silver Nanowires for Transparent Electrode. ECS Meeting Abstracts, 2019, , .	0.0	0